地平线双目深度估计参考算法 StereoNetPlus 优化思路解读

【参考算法】地平线双目深度估计参考算法 StereoNetPlus-v1.2.1

1.引言

本文将介绍地平线基于公版的双目深度估计算法 StereoNet 做的优化设计。首先介绍了双目深度估计的原理以及双目点云和 Lidar 点云的对比,然后由公版 StereoNet 的介绍切入到地平线参考算法的针对性优化,最后对可视化结果进行了解读。

2.双目深度估计原理

2.1 基本假设

假设双目系统是标准形式,即:

  • 两相机内参数相同,即焦距、分辨率等参数一致;
  • 两相机光轴平行;
  • 成像平面处于同一水平线;

假设以左相机坐标系为主坐标系,也就是说两相机只存在 X 轴方向上的平移变换。

2.2 几何法

在这里插入图片描述

  • P 是待测物体上的某一点,
  • O_R 与 O_T 分别是两个相机的光心,
  • p、p’:点 P 在两个相机感光器上的成像点,相机的成像平面经过旋转后放在了镜头前方
  • f 为相机焦距,B 为两相机中心距,Z 为我们想求得的深度信息。

在这里插入图片描述

在这里插入图片描述

公式中,焦距 f 和摄像头中心距 B 可通过标定得到,因此,只要获得了视差 d=X_R−X_T,就可以计算出深度 Z。

视差是同一个场景在两个相机下成像的像素的位置偏差。

2.3 相机参数推导法

由基本假设可以可知,左右相机内参相等,且左右相机只存在 X 轴方向的平移运动。那么有:

在这里插入图片描述

在这里插入图片描述

相机模型和各种坐标系介绍:https://blog.youkuaiyun.com/qq_40918859/article/details/122271381

在这里插入图片描述77.png)
在这里插入图片描述
在这里插入图片描述

2.4 双目点云和激光雷达点云的比较

参考链接:https://www.zhihu.com/question/264726552

  • 感知距离

双目模型在近处比较有优势(几十米),在远处的时候类似于单目,而 Lidar 感知距离可以达到 200m+(210-250)。

  • 点云****密度

双目的点云比 Lidar 要稠密。双目模型估计出的深度是像素级别的,camera 分辨率越大,点云就越稠密。而 Lidar 的采样点覆盖相对于场景的尺度来讲,具有很强的稀疏性。

  • 精度

Lidar 是主动方法,双目是被动方法,而且双目是根据模型估计视差计算出的深度,存在一定的标定、安装误差以及深度失真问题,所以其输出的深度信息的精度是不及 Lidar 的,但是需要注意的是 Lidar 受天气影响更大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值