Task8.二维图

数据的可视化模型

在这里插入图片描述

线形图(plot)

在这里插入图片描述
在这里插入图片描述

简易线性函数图(ezplot)

在这里插入图片描述

ezplot('x^2/9+y^2/4-1')

在这里插入图片描述

散点图(scatter)

在这里插入图片描述
在这里插入图片描述

极坐标图及其与直角坐标图的转换(polar)

极坐标转换成直角坐标的书写格式
[x,y]=pol2cart(theta,rho)
theta为模向量与横坐标的夹角向量,弧度表示。rho为模差长度的向量。
直角坐标转换极坐标:
[theta,rho]=cart2pol(x,y)

条形图

在这里插入图片描述
魔方矩阵的条形图

>> y=magic(4)

y =

    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1

>> subplot(1,2,1)
>> bar(y)
>> subplot(1,2,2)
>> bar(y,'stacked')

在这里插入图片描述

饼图(pie)

在这里插入图片描述

阶梯图(stairs)

在这里插入图片描述

茎干图(stem)

在这里插入图片描述

平面多边形的着色(fill)

在这里插入图片描述
在这里插入图片描述

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值