POJ 3734 —— 矩阵快速幂 + DP

Blocks
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 3716 Accepted: 1645

Description

Panda has received an assignment of painting a line of blocks. Since Panda is such an intelligent boy, he starts to think of a math problem of painting. Suppose there are N blocks in a line and each block can be paint red, blue, green or yellow. For some myterious reasons, Panda want both the number of red blocks and green blocks to be even numbers. Under such conditions, Panda wants to know the number of different ways to paint these blocks.

Input

The first line of the input contains an integer T(1≤T≤100), the number of test cases. Each of the next T lines contains an integer N(1≤N≤10^9) indicating the number of blocks.

Output

For each test cases, output the number of ways to paint the blocks in a single line. Since the answer may be quite large, you have to module it by 10007.

Sample Input

2
1
2

Sample Output

2
6

Source

题意是给你一列N个方块,要用红蓝绿黄四种颜色给方块染色,让你输出染成红色和染成绿色同时为偶数的染色方案数,结果对10007取模

思路是设a[i]为红绿都是偶数,b[i]为红绿有一个为偶数,c[i]为都不是偶数。我们有a[i + 1] = 2 * a[i] + b[i];b[i + 1] = 2 * a[i] + 2 * b[i] + 2 * c[i] ; c[i + 1] = b[i] + 2 * c[i];然后矩阵快速幂即可。

#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <map>
#include <string>
#include <stack>
#include <cctype>
#include <vector>
#include <queue>
#include <set>
#include <utility>
#include <cassert>
using namespace std;
///#define Online_Judge
#define outstars cout << "***********************" << endl;
#define clr(a,b) memset(a,b,sizeof(a))
#define lson l , mid  , rt << 1
#define rson mid + 1 , r , rt << 1 | 1
#define mk make_pair
#define FOR(i , x , n) for(int i = (x) ; i < (n) ; i++)
#define FORR(i , x , n) for(int i = (x) ; i <= (n) ; i++)
#define REP(i , x , n) for(int i = (x) ; i > (n) ; i--)
#define REPP(i ,x , n) for(int i = (x) ; i >= (n) ; i--)
const int MAXN = 1000000000 + 5;
const int MAXS = 10000 + 50;
const int sigma_size = 26;
const long long LLMAX = 0x7fffffffffffffffLL;
const long long LLMIN = 0x8000000000000000LL;
const int INF = 0x7fffffff;
const int IMIN = 0x80000000;
const int inf = 1 << 30;
#define eps 1e-8
const long long MOD = 1000000000 + 7;
const int mod = 10007;
typedef long long LL;
const double PI = acos(-1.0);
typedef double D;
typedef pair<int , int> pii;
typedef vector<int> vec;
typedef vector<vec> mat;


#define Bug(s) cout << "s = " << s << endl;
///#pragma comment(linker, "/STACK:102400000,102400000")
int n;

mat mul(mat & A , mat & B)
{
    mat C(A.size() , vec(B[0].size()));
    for(int i = 0 ; i < A.size() ; i++)
    {
        for(int k = 0 ; k < B.size() ; k++)
        {
            for(int j = 0  ; j < B[0].size() ; j++)
            {
                C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % mod;
            }
        }
    }
    return C;
}
mat pow(mat A , LL n)
{
    mat B(A.size() , vec(A.size()));
    for(int i = 0 ; i < A.size() ; i++)B[i][i] = 1;
    while(n > 0)
    {
        if(n & 1)B = mul(B , A);
        A = mul(A , A);
        n >>= 1;
    }
    return B;
}
void solve()
{
    mat A (3 , vec(3));
    A[0][0] = 2 ; A[0][1] = 1; A[0][2] = 0;
    A[1][0] = 2 ; A[1][1] = 2; A[1][2] = 2;
    A[2][0] = 0 ; A[2][1] = 1; A[2][2] = 2;
    A = pow(A , n);
    printf("%d\n" , A[0][0]);
}
int main()
{
    int t;
    cin >> t;
    while(t--)
    {
        scanf("%d" , &n);
        solve();
    }
    return 0;
}


以下是Java解决POJ3233—矩阵幂序列问题的代码和解释: ```java import java.util.Scanner; public class Main { static int n, k, m; static int[][] A, E; public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); k = sc.nextInt(); m = sc.nextInt(); A = new int[n][n]; E = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { A[i][j] = sc.nextInt() % m; E[i][j] = (i == j) ? 1 : 0; } } int[][] res = matrixPow(A, k); int[][] ans = matrixAdd(res, E); printMatrix(ans); } // 矩阵乘法 public static int[][] matrixMul(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % m; } } } return c; } // 矩阵快速幂 public static int[][] matrixPow(int[][] a, int b) { int[][] res = E; while (b > 0) { if ((b & 1) == 1) { res = matrixMul(res, a); } a = matrixMul(a, a); b >>= 1; } return res; } // 矩阵加法 public static int[][] matrixAdd(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { c[i][j] = (a[i][j] + b[i][j]) % m; } } return c; } // 输出矩阵 public static void printMatrix(int[][] a) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { System.out.print(a[i][j] + " "); } System.out.println(); } } } ``` 解释: 1. 首先读入输入的n、k、m和矩阵A,同时初始化单位矩阵E。 2. 然后调用matrixPow函数求出A的k次幂矩阵res。 3. 最后将res和E相加得到结果ans,并输出。 4. matrixMul函数实现矩阵乘法,matrixPow函数实现矩阵快速幂,matrixAdd函数实现矩阵加法,printMatrix函数实现输出矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值