POJ - 2387 Til the Cows Come Home

本文介绍了一种使用Dijkstra算法解决农场中奶牛Bessie寻找返回谷仓最短路径的问题。通过构建加权图并运用Dijkstra算法,确定了Bessie从牧场回到谷仓所需的最短距离。

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

Farmer John’s field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.
Input
* Line 1: Two integers: T and N

  • Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.
    Output
  • Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.
    Sample Input
    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100
    Sample Output
    90
    Hint
    INPUT DETAILS:

There are five landmarks.

OUTPUT DETAILS:
求从1到n的最短路长度
用dijkstra直接求就可以了

#include <iostream>
#include <cstdio>
#include <cstring>
#define inf 0x3f3f3f3f

using namespace std;
int d[1001];//记录起点到各个点的最短路径长度 
int w[1001][1001];//记录有权重的图
bool vis[1001];//访问标记
int t,n;

void dijkstra()
{
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=n;i++)
    {
        d[i]=w[1][i];//起点到各个点的长度初值为直接和起点连接的长度
    }
    for(int k=1;k<=n;k++)//向最短路径树中加点
    {
        int a=0,min1=inf;
        for(int i=1;i<=n;i++)//找一个目前不在最短路径中的点且离起点最近,即找最小的d[i]
        {
            if(!vis[i]&&d[i]<min1)
            {
                a=i;
                min1=d[i];
            }
        }
        vis[a]=1;//将找到的点加入最短路径树中
        for(int j=1;j<=n;j++)//在通过新加入的a点路径找到离起点更短的路径
        {
            if(!vis[j]&&d[a]+w[a][j]<d[j])
            {
                d[j]=d[a]+w[a][j];
            }
        }
    }
}

int main()
{
    while(scanf("%d%d",&t,&n)==2)
    {
        for(int i=1;i<=n;i++)//先将各个路径初值设为inf
        {
            for(int j=1;j<=n;j++)
            {
                if(i==j)
                {
                    w[i][j]=0;
                }
                else
                {
                    w[i][j]=inf;
                }
            }
        }
        int a,b,c;
        for(int i=0;i<t;i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            if(w[a][b]>c)
            {
                w[a][b]=c;
                w[b][a]=c;
            }
        }
        dijkstra();
        printf("%d\n",d[n]);
    }
    return 0;
}
【博士论文复现】【阻抗建模、验证扫频法】光伏并网逆变器扫频与稳定性分析(包含锁相环电流环)(Simulink仿真实现)内容概要:本文档是一份关于“光伏并网逆变器扫频与稳定性分析”的Simulink仿真实现资源,重点复现博士论文中的阻抗建模与扫频法验证过程,涵盖锁相环和电流环等关键控制环节。通过构建详细的逆变器模型,采用小信号扰动方法进行频域扫描,获取系统输出阻抗特性,并结合奈奎斯特稳定判据分析并网系统的稳定性,帮助深入理解光伏发电系统在弱电网条件下的动态行为与失稳机理。; 适合人群:具备电力电子、自动控制理论基础,熟悉Simulink仿真环境,从事新能源发电、微电网或电力系统稳定性研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握光伏并网逆变器的阻抗建模方法;②学习基于扫频法的系统稳定性分析流程;③复现高水平学术论文中的关键技术环节,支撑科研项目或学位论文工作;④为实际工程中并网逆变器的稳定性问题提供仿真分析手段。; 阅读建议:建议读者结合相关理论教材与原始论文,逐步运行并调试提供的Simulink模型,重点关注锁相环与电流控制器参数对系统阻抗特性的影响,通过改变电网强度等条件观察系统稳定性变化,深化对阻抗分析法的理解与应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值