| Time Limit: 3000MS | Memory Limit: Unknown | 64bit IO Format: %lld & %llu |
Description
University of Ulm Local Contest
Problem F: Frequent values
You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.
Input Specification
The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j(1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the query.
The last test case is followed by a line containing a single 0.
Output Specification
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
Sample Input
10 3 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0
Sample Output
1 4 3
A naive algorithm may not run in time!
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100000+10;
int a[maxn],d[maxn][20];//a多余?
int n,q;
int size;
//int value[maxn],count0[maxn]={0};
int num[maxn],left0[maxn],right0[maxn];
void RLE()//游程编码,维护a,num,left0,right0四个数组.好好体会
{
int x,cnt=-1,l;
int maxnum=0xffffffff;
for(int i=0;i<n;i++)
{
scanf("%d",&x);
if(x==maxnum)
{
a[cnt]++;
num[i]=cnt;
left0[i]=l;
}
else
{
if(cnt>=0)
{
for(int j=l;j<=i-1;j++)
right0[j]=i-1;
}
cnt++;
l=i;
num[i]=cnt;
left0[i]=l;
a[cnt]=1;
maxnum=x;
}
}
for (int i = l; i < n; i++)
right0[i] = n-1;
size = cnt + 1;
}
void RMQ_init()
{
int n=size;//优化,缩小范围
for(int i=0;i<n;i++)
d[i][0]=a[i];
for(int j=1;(1<<j)<=n;j++)
for(int i=0;i+(1<<j)-1<n;i++)
d[i][j]=max(d[i][j-1],d[i+(1<<(j-1))][j-1]);
}
int RMQ(int L,int R)
{
if(L>R) return 0;//这句话的作用?
int k=0;
while((1<<(k+1))<=R-L+1)
k++;
return max(d[L][k],d[R-(1<<k)+1][k]);
}
int main()
{
while(scanf("%d%d",&n,&q)&&n)
{
RLE();
RMQ_init();
while(q--)
{
int L,R;
scanf("%d%d",&L,&R);
L--;R--;//使得从0开始
if(num[L]==num[R])//
printf("%d\n",R-L+1);//多余
else
{
int t1=right0[L]-L+1;
int t2=R-left0[R]+1;
int t3=RMQ(num[L]+1,num[R]-1);
int ans=max(t1,max(t2,t3));
printf("%d\n",ans);
}
}
}
return 0;
}
本文深入探讨了信息技术领域的核心概念与应用实践,涵盖了从基础到进阶的多个技术领域,包括但不限于前端开发、后端开发、移动开发、游戏开发、大数据开发等。文章详细阐述了各领域内的关键技术和解决方案,旨在为读者提供全面的技术指导和实践洞察。
435

被折叠的 条评论
为什么被折叠?



