Time Limit: 1000MS | Memory Limit: 65536KB | 64bit IO Format: %I64d & %I64u |
Description
The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
Input
There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 10
6). There are no blank lines between cases. A line with a single 0 terminates the input.
Output
For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn.
Sample Input
2 3 4 5 0
Sample Output
1 3 5 9
Source
POJ Contest,Author:Mathematica@ZSU
欧拉函数的简单题,跟poj3090差不多。
代码:
#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=1000005;
int phi[maxn];
long long s[maxn];//s[]用long long
void getphi(int n)//欧拉函数打表
{
int i,j;
memset(phi,0,sizeof(phi));
phi[1]=1;
for(i=2;i<=n;i++)
{
if(!phi[i])
for(j=i;j<=n;j+=i)
{
if(!phi[j])
phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
}
int main()
{
int n,i;
getphi(maxn);
for(i=2;i<maxn;i++)
s[i]=phi[i]+s[i-1];//把s[]打表,降低时间复杂度
while(scanf("%d",&n)&&n)
printf("%lld\n",s[n]);
return 0;
}
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=1000005;
int phi[maxn];
long long s[maxn];//s[]用long long
void getphi(int n)//欧拉函数打表
{
int i,j;
memset(phi,0,sizeof(phi));
phi[1]=1;
for(i=2;i<=n;i++)
{
if(!phi[i])
for(j=i;j<=n;j+=i)
{
if(!phi[j])
phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
}
int main()
{
int n,i;
getphi(maxn);
for(i=2;i<maxn;i++)
s[i]=phi[i]+s[i-1];//把s[]打表,降低时间复杂度
while(scanf("%d",&n)&&n)
printf("%lld\n",s[n]);
return 0;
}