UVA-111 History Grading

本文详细介绍了UVA-111问题,即如何根据历史事件的正确顺序对学生提交的答案进行评分。通过解释背景、给出实例输入输出,以及提供代码实现(使用了动态规划求解最长递增子序列问题),旨在帮助读者理解并解决历史成绩评定的相关问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UVA - 111
Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu

[]   [Go Back]   [Status]  

Description

Download as PDF


 History Grading 

Background

Many problems in Computer Science involve maximizing some measure according to constraints.

Consider a history exam in which students are asked to put several historical events into chronological order. Students who order all the events correctly will receive full credit, but how should partial credit be awarded to students who incorrectly rank one or more of the historical events?

Some possibilities for partial credit include:

  1. 1 point for each event whose rank matches its correct rank
  2. 1 point for each event in the longest (not necessarily contiguous) sequence of events which are in the correct order relative to each other.

For example, if four events are correctly ordered 1 2 3 4 then the order 1 3 2 4 would receive a score of 2 using the first method (events 1 and 4 are correctly ranked) and a score of 3 using the second method (event sequences 1 2 4 and 1 3 4 are both in the correct order relative to each other).

In this problem you are asked to write a program to score such questions using the second method.

The Problem

Given the correct chronological order of n events tex2html_wrap_inline34 as tex2html_wrap_inline36 where tex2html_wrap_inline38 denotes the ranking of event i in the correct chronological order and a sequence of student responses tex2html_wrap_inline42 where tex2html_wrap_inline44 denotes the chronological rank given by the student to eventi; determine the length of the longest (not necessarily contiguous) sequence of events in the student responses that are in the correct chronological order relative to each other.

The Input

The first line of the input will consist of one integer n indicating the number of events with tex2html_wrap_inline50 . The second line will contain n integers, indicating the correct chronological order of n events. The remaining lines will each consist of n integers with each line representing a student's chronological ordering of the n events. All lines will contain n numbers in the range tex2html_wrap_inline60 , with each number appearing exactly once per line, and with each number separated from other numbers on the same line by one or more spaces.

The Output

For each student ranking of events your program should print the score for that ranking. There should be one line of output for each student ranking.

Sample Input 1

4
4 2 3 1
1 3 2 4
3 2 1 4
2 3 4 1

Sample Output 1

1
2
3

Sample Input 2

10
3 1 2 4 9 5 10 6 8 7
1 2 3 4 5 6 7 8 9 10
4 7 2 3 10 6 9 1 5 8
3 1 2 4 9 5 10 6 8 7
2 10 1 3 8 4 9 5 7 6

Sample Output 2

6
5
10
9
 
  
 
  
DP求LIS(最长递增子序列)问题。读懂题意很关键:
题目大意:历史成绩评定,给出一些事件的事件先后顺序,然后给出学生的答案,求出得到的先后时间正确的最多个数,以给出成绩。

注意,给出的序列和一般理解上的出现次序是不同的。比如4 2 3 1,一般理解是第4个事件在第1位,第2个事件在第2位,第1个事件在第4位。但在这道题目,序列的含义是第1个事件在第4位,第2个事件在第2位,第4个事件在第一位。为方便计算,需要对输入的序列进行转换,使数字对号入座。比如一个正确的序列是:

 正确答案学生答案含义
输入的序列3 1 2 4 9 5 10 6 8 72 10 1 3 8 4 9 5 7 6历史事件发生在第几位
转换后的序列2 3 1 4 6 8 10 9 5 73 1 4 6 8 10 9 5 7 2发生了第几个历史事件

接下来就用转换后的序列进行计算。为了方便的看出学生答案的顺序是否正确,应该按照正确答案与1 2 ... 10的对应关系将学生答案再做一次转换。正确答案中第2个历史件事发生在第1位,那么学生答案中的2应转换为1;即3转换为2,以此类推。学生答案就转换为最终的序列为:

编号1 2 3 4 5 6 7 8 9 10
序列2 3 4 5 6 7 8 9 10 1

代码如下:
#include <iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=25;
int a[maxn],b[maxn],dp[maxn];

int main()
{
    int n,m,i,j,k,s,maxm;
    while(scanf("%d",&n)!=EOF)
    {
        for(i=1;i<=n;i++)
        {
            scanf("%d",&s);
            a[i]=s;//a[i]=s表示第s年的历史事件是i;
        }
        while(scanf("%d",&s)!=EOF)
        {
            b[s]=a[1];
            maxm=0;
            for(i=2;i<=n;i++)
            {
                scanf("%d",&s);
                b[s]=a[i];
//学生答案(b[])根据标准答案(a[])按年份1~n调整相对时间顺序,便于和1~n比较
                     //这里要好好分析,理解
} dp[1]=1; for(i=2;i<=n;i++)//以下是dp关键步骤,从小到大做dp { dp[i]=1; for(j=1;j<i;j++) if(b[j]<b[i])/*若前面有比b[i]小的,dp[i]取dp[i]和dp[j]+1(包含b[i],所以+1)中较大的*/ dp[i]=max(dp[i],dp[j]+1); maxm=max(dp[i],maxm);//maxm取dp[i]与之前的maxm中的最大值 } printf("%d\n",maxm); } } return 0;}

总结:
 
  
dp博大精深,代码简洁,想到很难,蕴意深刻。往往是解决问题的利器。
 
  
 
  
 
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值