Codeforces 472D

本文解析了一道Codeforces题目,采用特殊验证逻辑而非最小生成树方法。通过预处理特殊情况,利用根节点1进行两点间距离关系判断,确保图的一致性和有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看官方题解提供的是最小生成树,怎么也想不明白,you can guess and prove it!

看了好几个人的代码,感觉实现思路全都不一样,不得不佩服cf题目想法的多样性

下面说说我自己的理解,将1作为根,对于任意两点存在两种关系:

1.一个点位于另一个点的子树上。两点到1的距离之差绝对值等于两点距离。

2.两个点在某一个点的不同子树上。两点到1距离之和减去两点距离等于两倍某个点到1的距离。

这样不需要管父节点是哪一个,只要保证存在就行了。

判断这两种情况就可以了。

当然在开始的时候要注意一些特殊情况的判断,预处理一下。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
using namespace std;
int n;
long long mp[2005][2005];
map <long long,int> m;
int main()
{
    int n;
    cin>>n;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            scanf("%I64d",&mp[i][j]);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        {
            if((i==j && mp[i][j]) || (i!=j && mp[i][j]==0) || mp[i][j]!=mp[j][i])
            {
                cout<<"NO"<<endl;
                return 0;
            }
        }
    for(int i=1;i<=n;i++)
        m[2*mp[1][i]]=1;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if((mp[i][j]==abs(mp[1][i]-mp[1][j])) || m[mp[1][j]+mp[1][i]-mp[i][j]])continue;
            cout<<"NO"<<endl;
            return 0;
        }
    }
    cout<<"YES"<<endl;
    return 0;
}


### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值