HDU 1787 欧拉公式

本文探讨了如何通过欧拉函数计算与给定整数N互质的整数数量,并提供了求解方法及示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GCD Again

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1801    Accepted Submission(s): 686

Problem Description
Do you have spent some time to think and try to solve those unsolved problem after one ACM contest? No? Oh, you must do this when you want to become a "Big Cattle". Now you will find that this problem is so familiar: The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1. This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study. Good Luck!
 
Input
Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
 
Output
For each integers N you should output the number of integers M in one line, and with one line of output for each line in input.
 
Sample Input
2
4
0
 
Sample Output
0
1
 
欧拉公式:f(n) = n * (1-1/p1) * (1-1/p2)...* (1-1/pk),其中p1到pk是n的所有不同质因数,比如12 = 2*2*3;此时只取2和3,也就是f(12)=12*(1-1/2)*(1-1/3) = 4;f(n)的值就是比n小的且与n互质的数的个数,f(12)=4也就是在12以内里,有4个与12互质的数(1,5,7,11)。
思路:根据题目要求,求出f(n),用n减去互质的数f(n),再减去它自己本身,即为答案。
View Code
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 
 7 using namespace std;
 8 
 9 int euler(int n)
10 {
11     int ret = n;
12     int t = (int)sqrt(n*1.0);
13     for(int i=2; i<=t; i++)
14     {
15         if(n%i == 0)
16         {
17             ret = ret/i * (i-1);
18             while(n%i == 0)
19                 n /=  i;
20         }
21     }
22     if(n > 1)
23         ret = ret/n * (n-1);
24     return ret;
25 }
26 
27 int main()
28 {
29     int N;
30     while(~scanf("%d",&N) && N)
31     {
32         printf("%d\n",N-1-euler(N));
33     }
34     return 0;
35 }

 

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值