PTA甲级最短路径 Dijkstra + DFS模板题

本文介绍了如何使用Dijkstra算法和DFS策略解决PTA甲级1111题的最短路径问题。题目相对简单,主要涉及图论中的经典算法应用,通过维护前置节点数组并进行深度优先搜索来完成路径回溯。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

甲级1111题,除了繁琐没啥难度,常规模板题
dijkstra的时候维护一个prev前置节点数组,然后用DFS去遍历这个prev,从图中出发的终点开始,起点结束。

#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <algorithm>
#include <vector>
#include <stdio.h>
using namespace std;

const int maxnum = 505;
const int INF = 99999;
int N, M, S, E;

int G[maxnum][maxnum];
int T[maxnum][maxnum];
int d[maxnum];
int t[maxnum];
bool viewed[maxnum];

vector<int> prevd[maxnum];
vector<int> prevt[maxnum];

void DijkstraD(int s)
{
	fill(d, d + maxnum, INF);
	d[s] = 0;
	fill(viewed, viewed + maxnum, false);

	for (int i = 0; i < N; i++)
	{
		int u = -1, MIN = INF;
		for (int j = 0; j < N; j++)
		{
			if (viewed[j] == false && d[j] < MIN)
			{
				u = j;
				MIN = d[j];
			}
		}

		if (u == -1) return;
		viewed[u] = true;
		for (int v = 0; v < N; v++)
		{
			if (viewed[v] == false && G[u][v] != INF)
			{
				if (d[u] + G[u][v] < d[v])
				{
					prevd[v].clear();
					prevd[v].push_back(u);
					d[v] = d[u] + G[u][v];
				}
				else if(d[u] + G[u][v] == d[v])
					prevd[v].push_back(u);
			}
		}
	}
}
void DijkstraT(int s)
{
	fill(t, t + maxnum, INF);
	t[s] = 0;
	fill(viewed, viewed + maxnum, false);

	for (int i = 0; i < N; i++)
	{
		int u = -1, MIN = INF;
		for (int j = 0; j < N; j++)
		{
			if (viewed[j] == false && t[j] < MIN)
			{
				u = j;
				MIN = t[j];
			}
		}

		if (u == -1) return;
		viewed[u] = true;
		for (int v = 0; v < N; v++)
		{
			if (viewed[v] == false && T[u][v] != INF)
			{
				if (t[u] + T[u][v] < t[v])
				{
					prevt[v].clear();
					prevt[v].push_back(u);
					t[v] = t[u] + T[u][v];
				}
				else if (t[u] + T[u][v] == t[v])
					prevt[v].push_back(u);
			}
		}
	}
}

int mintime = INF;
vector<int> tmp;
vector<int> resD;
void DFSd(int v)
{
	if (v == S)
	{
		tmp.push_back(v);
		int time = 0,pre,cur;
		for (int i = tmp.size() - 1; i >= 1; i--)
		{
			pre = tmp[i], cur = tmp[i - 1];
			time += T[pre][cur];
		}

		if (time < mintime)
		{
			resD.clear();
			resD = tmp;
			mintime = time;
		}

		tmp.pop_back();
	}

	tmp.push_back(v);

	for (int i = 0; i < prevd[v].size(); i++)
	{
		DFSd(prevd[v][i]);
	}

	tmp.pop_back();
}

vector<int> resT;
int minnode = INF;
void DFSt(int v)
{
	if (v == S)
	{
		tmp.push_back(v);
		int node = tmp.size();
		if (node < minnode)
		{
			resT.clear();
			resT = tmp;
			minnode = node;
		}

		tmp.pop_back();
	}

	tmp.push_back(v);

	for (int i = 0; i < prevt[v].size(); i++)
	{
		DFSt(prevt[v][i]);
	}

	tmp.pop_back();
}



int main()
{
	cin >> N >> M;
	fill(G[0], G[0] + maxnum * maxnum, INF);
	fill(T[0], T[0] + maxnum * maxnum, INF);
	for (int i = 0; i < M; i++)
	{
		int a, b, oneway, dis, time;
		cin >> a >> b >> oneway >> dis >> time;
		if (oneway)//单向
		{
			G[a][b] = dis;
			T[a][b] = time;
		}
		else
		{
			G[a][b] = G[b][a] = dis;
			T[a][b] = T[b][a] = time;
		}
	}
	cin >> S >> E;

	DijkstraD(S);
	DijkstraT(S);

	DFSd(E);
	tmp.clear();
	DFSt(E);

	if (resD == resT)
	{
		printf("Distance = %d;", d[E]);
		printf(" Time = %d: ",t[E]);
		for (int i = resD.size() - 1; i >= 0; --i)
		{
			if (i == resD.size() - 1) cout << resD[i];
			else cout << " -> " << resD[i];
		}
	}
	else
	{
		printf("Distance = %d: ", d[E]);
		for (int i = resD.size() - 1; i >= 0; --i)
		{
			if (i == resD.size() - 1) cout << resD[i];
			else cout << " -> " << resD[i];
		}
		cout << "\n";

		printf("Time = %d: ", t[E]);
		for (int i = resT.size() - 1; i >= 0; --i)
		{
			if (i == resT.size() - 1) cout << resT[i];
			else cout << " -> " << resT[i];
		}
	}

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值