Reference: Reducing Snapshots to Points: A Visual Analytics Approach to Dynamic Network Exploration by Elzen et. al. Best Paper of VAST 2015.
Principal Component Analysis (PCA)
Multidimensional Scaling (MDS)
MDS(multidimensional scaling)多维尺度分析 // 通常MDS可以被看做是一个优化问题
t-Distributed Stochastic Neighbour Embedding (t-SNE)
t-SNE降维方法
The computation times for both PCA and t-SNE can be strongly reduced by using improved variants such as Randomized PCA and Barnes-HutSNE, respectively. This makes them usable for large datasets and enables interactive real-time analysis.
PCA is a linear dimensionality reduction technique, i.e., the resulting dimensions are linear combinations of the original dimensions such that the variance of the data is described best. This restriction can be overcome by applying a kerneltrick to achieve non-linearity.
本文介绍了用于动态网络探索的视觉分析方法,并重点讨论了几种关键的降维技术,包括主成分分析(PCA)、多维尺度分析(MDS)及t-分布随机邻域嵌入(t-SNE)。通过使用改进的变体如随机PCA和Barnes-Hut SNE,这些技术能够有效应用于大型数据集并支持实时交互分析。
1183

被折叠的 条评论
为什么被折叠?



