-
原理
C4.5算法是在ID3算法上的一种改进,它与ID3算法最大的区别就是特征选择上有所不同,一个是基于信息增益比,一个是基于信息增益。
之所以这样做是因为信息增益倾向于选择取值比较多的特征(特征越多,条件熵(特征划分后的类别变量的熵)越小,信息增益就越大);因此在信息增益下面加一个分母,该分母是当前所选特征的熵,注意:这里而不是类别变量的熵了。
这样就构成了新的特征选择准则,叫做信息增益比。为什么加了这样一个分母就会消除ID3算法倾向于选择取值较多的特征呢?
因为特征取值越多,该特征的熵就越大,分母也就越大,所以信息增益比就会减小,而不是像信息增益那样增大了,一定程度消除了算法对特征取值范围的影响。
-
实现
在算法实现上,C4.5算法只是修改了信息增益计算的函数calcShannonEntOfFeature和最优特征选择函数chooseBestFeatureToSplit。
calcShannonEntOfFeature在ID3的calcShannonEnt函数上加了个参数feat,ID3中该函数只用计算类别变量的熵,而calcShannonEntOfFeature可以计算指定特征或者类别变量的熵。
chooseBestFeatureToSplit函数在计算好信息增益后,同时计算了当前特征的熵IV,然后相除得到信息增益比,以最大信息增益比作为最优特征。
在划分数据的时候,有可能出现特征取同一个值,那么该特征的熵为0,同时信息增益也为0(类别变量划分前后一样,因为特征只有一个取值),0/0没有意义,可以跳过该特征。
-
代码
1 #coding=utf-8 2 import operator 3 from math import log 4 import time 5 import os, sys 6 import string 7 8 def createDataSet(trainDataFile): 9 print trainDataFile 10 dataSet = [] 11 try: 12 fin = open(trainDataFile) 13 for line in fin: 14 line = line.strip() 15 cols = line.split('\t') 16 row = [cols[1], cols[2], cols[3], cols[4], cols[5], cols[6], cols[7], cols[8], cols[9], cols[10], cols[0]] 17 dataSet.append(row) 18 #print row 19 except: 20 print 'Usage xxx.py trainDataFilePath' 21 sys.exit() 22 labels = ['cip1', 'cip2', 'cip3', 'cip4', 'sip1', 'sip2', 'sip3', 'sip4', 'sport', 'domain'] 23 print 'dataSetlen', len(dataSet) 24 return dataSet, labels 25 26 #calc shannon entropy of label or feature 27 def calcShannonEntOfFeature(dataSet, feat): 28 numEntries = len(dataSet) 29 labelCounts = {} 30 for feaVec in dataSet: 31 currentLabel = feaVec[feat] 32 if currentLabel not in labelCounts: 33 labelCounts[currentLabel] = 0 34 labelCounts[currentLabel] += 1 35 shannonEnt = 0.0 36 for key in labelCounts: 37 prob = float(labelCounts[key])/numEntries 38 shannonEnt -= prob * log(prob, 2) 39 return shannonEnt 40 41 def splitDataSet(dataSet, axis, value): 42 retDataSet = [] 43 for featVec in dataSet: 44 if featVec[axis] == value: 45 reducedFeatVec = featVec[:axis] 46 reducedFeatVec.extend(featVec[axis+1:]) 47 retDataSet.append(reducedFeatVec) 48 return retDataSet 49 50 def chooseBestFeatureToSplit(dataSet): 51 numFeatures = len(dataSet[0]) - 1 #last col is label 52 baseEntropy = calcShannonEntOfFeature(dataSet, -1) 53 bestInfoGainRate = 0.0 54 bestFeature = -1 55 for i in range(numFeatures): 56 featList = [example[i] for example in dataSet] 57 uniqueVals = set(featList) 58 newEntropy = 0.0 59 for value in uniqueVals: 60 subDataSet = splitDataSet(dataSet, i, value) 61 prob = len(subDataSet) / float(len(dataSet)) 62 newEntropy += prob *calcShannonEntOfFeature(subDataSet, -1) #calc conditional entropy 63 infoGain = baseEntropy - newEntropy 64 iv = calcShannonEntOfFeature(dataSet, i) 65 if(iv == 0): #value of the feature is all same,infoGain and iv all equal 0, skip the feature 66 continue 67 infoGainRate = infoGain / iv 68 if infoGainRate > bestInfoGainRate: 69 bestInfoGainRate = infoGainRate 70 bestFeature = i 71 return bestFeature 72 73 #feature is exhaustive, reture what you want label 74 def majorityCnt(classList): 75 classCount = {} 76 for vote in classList: 77 if vote not in classCount.keys(): 78 classCount[vote] = 0 79 classCount[vote] += 1 80 return max(classCount) 81 82 def createTree(dataSet, labels): 83 classList = [example[-1] for example in dataSet] 84 if classList.count(classList[0]) ==len(classList): #all data is the same label 85 return classList[0] 86 if len(dataSet[0]) == 1: #all feature is exhaustive 87 return majorityCnt(classList) 88 bestFeat = chooseBestFeatureToSplit(dataSet) 89 bestFeatLabel = labels[bestFeat] 90 if(bestFeat == -1): #特征一样,但类别不一样,即类别与特征不相关,随机选第一个类别做分类结果 91 return classList[0] 92 myTree = {bestFeatLabel:{}} 93 del(labels[bestFeat]) 94 featValues = [example[bestFeat] for example in dataSet] 95 uniqueVals = set(featValues) 96 for value in uniqueVals: 97 subLabels = labels[:] 98 myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels) 99 return myTree 100 101 def main(): 102 if(len(sys.argv) < 3): 103 print 'Usage xxx.py trainSet outputTreeFile' 104 sys.exit() 105 data,label = createDataSet(sys.argv[1]) 106 t1 = time.clock() 107 myTree = createTree(data,label) 108 t2 = time.clock() 109 fout = open(sys.argv[2], 'w') 110 fout.write(str(myTree)) 111 fout.close() 112 print 'execute for ',t2-t1 113 if __name__=='__main__': 114 main()
本文来自于:
谢谢博主