什么是阈值?(以下摘自www.opencv.org.cn学习网站)
最简单的图像分割的方法。
应用举例:从一副图像中利用阈值分割出我们需要的物体部分(当然这里的物体可以是一部分或者整体)。这样的图像分割方法是基于图像中物体与背景之间的灰度差异,而且此分割属于像素级的分割。
为了从一副图像中提取出我们需要的部分,应该用图像中的每一个像素点的灰度值与选取的阈值进行比较,并作出相应的判断。(注意:阈值的选取依赖于具体的问题。即:物体在不同的图像中有可能会有不同的灰度值。
一旦找到了需要分割的物体的像素点,我们可以对这些像素点设定一些特定的值来表示。(例如:可以将该物体的像素点的灰度值设定为:‘0’(黑色),其他的像素点的灰度值为:‘255’(白色);当然像素点的灰度值可以任意,但最好设定的两种颜色对比度较强,方便观察结果)。
阈值分割函数如下:
double cv::threshold(
cv::InputArray src, // 输入图像
cv::OutputArray dst, // 输出图像
double thresh, // 阈值
double maxValue, // 向上最大值
int thresholdType // 阈值化操作的类型
);
源码对thresholdType的定义:
enum ThresholdTypes {
THRESH_BINARY = 0, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{maxval}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
THRESH_BINARY_INV = 1, //!< \f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{maxval}}{otherwise}\f]
THRESH_TRUNC = 2, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{threshold}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
THRESH_TOZERO = 3, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{src}(x,y)}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
THRESH_TOZERO_INV = 4, //!< \f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
THRESH_MASK = 7,
THRESH_OTSU = 8, //!< flag, use Otsu algorithm to choose the optimal threshold value
THRESH_TRIANGLE = 16 //!< flag, use Triangle algorithm to choose the optimal threshold value
};
阈值类型:
THRESH_BINARY:过门限的值设置为maxVal,其它值置零
THRESH_BINARY_INV:过门限的值置零,其它值设置为maxVal
THRESH_TRUNC:过门限的值设置为门限值,其它值置不变
THRESH_TOZERO:过门限的值不变,其它值置零
THRESH_TOZERO_INV:过门限的值置零,其它值不变
阈值类型图示
下面是演示的源代码,环境是opencv3.2+qt5.8+vs2015,在qt程序下Mainwindow下编译,修改了main函数:
#include "mainwindow.h"
#include <QApplication>
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace cv;
using namespace std;
/// 全局变量定义及赋值
int threshold_value = 0;
int threshold_type = 3;
int const max_value = 255;
int const max_type = 4;
int const max_BINARY_value = 255;
Mat src, src_gray, dst;
const char* window_name = "Threshold Demo";
//分割类型
const char* trackbar_type = "Type: \n 0: Binary \n 1: Binary Inverted \n 2: Truncate \n 3: To Zero \n 4: To Zero Inverted";
const char* trackbar_value = "Value";
/// 自定义函数声明
void Threshold_Demo( int, void* );
int main(int argc, char *argv[])
{
QApplication a(argc, argv);
/**
* @主函数
*/
/// 读取一副图片,不改变图片本身的颜色类型(该读取方式为DOS运行模式)
src = imread("D:/12.jpg", 1 );
/// 将图片转换成灰度图片
cvtColor( src, src_gray, CV_RGB2GRAY );
/// 创建一个窗口显示图片
namedWindow( window_name, CV_WINDOW_AUTOSIZE );
/// 创建滑动条来控制阈值,第一个滑条是对应分割类型,第二个对应是分割阈值
createTrackbar( trackbar_type,
window_name, &threshold_type,
max_type, Threshold_Demo );
createTrackbar( trackbar_value,
window_name, &threshold_value,
max_value, Threshold_Demo );
/// 初始化自定义的阈值函数
Threshold_Demo( 0, 0 );
/// 等待用户按键。如果是ESC健则退出等待过程。
while(true)
{
int c;
c = waitKey( 20 );
if( (char)c == 27 )
{ break; }
}
MainWindow w;
w.show();
return a.exec();
}
/**
* @自定义的阈值函数
*/
void Threshold_Demo( int, void* )
{
/* 0: 二进制阈值
1: 反二进制阈值
2: 截断阈值
3: 0阈值
4: 反0阈值
*/
threshold( src_gray, dst, threshold_value, max_BINARY_value,threshold_type );
imshow( window_name, dst );
}
效果如下: