智能优化系列|第二期:模拟退火算法详解及TSP问题实战案例(附python代码)

1.什么是模拟退火算法(简介)

模拟退火算法是一种基于概率的全局寻优方法,用来在一个大的搜寻空间内找寻命题的最优解。它是基于Monte-Carlo迭代求解策略的一种随机寻优算法。

2.模拟退火算法核心思想

模拟退火算法的(Simulated Annealing,SA)是一种基于概率的全局寻优方法,已在理论上被证明以概率1 收敛于全局最优解。模拟退火算法模拟物理退火过程,从某一较高初温出发,随着温度的不断下降,以一定概率突跳在全局进行寻优,并最终趋于全局最优,搜索过程中趋于零概率的突跳特性可有效避免算法陷入局部最优。模拟退火算法依赖现有求解规则,是一种对已有规则进行改造的算法,它的解与初始值无关;其核心思想是以1概率接受较优解,以较小概率接受劣质解(Metropolis准则)

3.模拟退火的热力学原理

根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:

P(dE) = exp( dE/(kT) )

其中k是一个常数,exp表示自然指数,且dE<0(温度总是降低的)。这条公式指明了:

1) 温度越高,出现一次能量差为dE的降温的概率就越大。

2) 温度越低,则出现降温的概率就越小。又由于dE总是小于0(不然怎么叫退火),因此dE/kT <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值