视觉语言模型解释 |
文章目录
一. 视觉语言模型解析
视觉语言模型是一类能够同时从图像和文本中学习,以处理从视觉问题回答到图像描述等多种任务的模型。本文将深入探讨视觉语言模型的核心组成部分,介绍其工作原理,如何选取适合的模型,以及如何利用 trl 的新版本进行便捷的微调。
1.什么是视觉语言模型?
视觉语言模型是指能够从图像和文本中学习的多模态模型。这类模型属于生成模型,能够接收图像和文本输入,并产生文本输出。大型视觉语言模型具备优秀的零样本能力,能够广泛适应多种图像类型,如文档、网页等,并且表现出良好的泛化性。应用场景包括图像聊天、图像识别指导、视觉问答、文档理解和图像描述等。部分视觉语言模型还能识别图像中的空间属性,例如,在被要求检测或分割特定对象时,能够输出边界框或分割蒙版,或定位不同实体并回答关于它们的相对或绝对位置的问题。当前大型视觉语言模型在训练数据、图像编码方式上具有多样性