MTD学习报告004

 

接着看s3c2410_nand_add_partition(), 这是重点,

Drivers/mtd/nand/s3c2410.c:

static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,

                                  struct s3c2410_nand_mtd *mtd,

                                  struct s3c2410_nand_set *set)

{

       if (set == NULL)

              return add_mtd_device(&mtd->mtd);

 

       if (set->nr_partitions > 0 && set->partitions != NULL) {

              return add_mtd_partitions(&mtd->mtd,

                                     set->partitions,

                                     set->nr_partitions);

       }

 

       return add_mtd_device(&mtd->mtd);

}

由上面的分析可知, 这里调的是add_mtd_partitions().

这个函数相对也比较长, 我们一段段的看.

Drivers/mtd/mtdpart.c:

int add_mtd_partitions(struct mtd_info *master,

                         const struct mtd_partition *parts,

                         int nbparts)

{

       struct mtd_part *slave;

       u_int32_t cur_offset = 0;

       int i;

 

       printk (KERN_NOTICE "Creating %d MTD partitions on /"%s/":/n", nbparts, master->name);

 

    /*为每个partition初始化*/

/*这里的mtd就是面向应用层的那个了*/

       for (i = 0; i < nbparts; i++) {

 

              /* allocate the partition structure */

        /*每个partition都有个专门的对象来代表它们*/

              slave = kmalloc (sizeof(*slave), GFP_KERNEL);

              if (!slave) {

                     printk ("memory allocation error while creating partitions for /"%s/"/n",

                            master->name);

                     del_mtd_partitions(master);

                     return -ENOMEM;

              }

              memset(slave, 0, sizeof(*slave));

              list_add(&slave->list, &mtd_partitions);   /*每个partition都添加到partition列表中去*/

 

              /* set up the MTD object for this partition */

        /*初始化每个partition的各种属性,包括回调函数*/

              slave->mtd.type = master->type;

              slave->mtd.flags = master->flags & ~parts[i].mask_flags;

              slave->mtd.size = parts[i].size;  /*partition的大小,可参考前面的分区信息*/

              slave->mtd.oobblock = master->oobblock;

              slave->mtd.oobsize = master->oobsize;

              slave->mtd.ecctype = master->ecctype;

              slave->mtd.eccsize = master->eccsize;

 

              slave->mtd.name = parts[i].name; /*partition的名字,可参考前面的分区信息*/

              slave->mtd.bank_size = master->bank_size;

              slave->mtd.owner = master->owner;

       

        /*初始化对该partition的各种操作函数*/

              slave->mtd.read = part_read;  /*对该partition的读函数*/

              slave->mtd.write = part_write;  /*对该partition的写函数*/

              if(master->point && master->unpoint){

                     slave->mtd.point = part_point;

                     slave->mtd.unpoint = part_unpoint;

              }

             

              if (master->read_ecc)

                     slave->mtd.read_ecc = part_read_ecc;

              if (master->write_ecc)

                     slave->mtd.write_ecc = part_write_ecc;

              if (master->read_oob)

                     slave->mtd.read_oob = part_read_oob;

              if (master->write_oob)

                     slave->mtd.write_oob = part_write_oob;

              if(master->read_user_prot_reg)

                     slave->mtd.read_user_prot_reg = part_read_user_prot_reg;

              if(master->read_fact_prot_reg)

                     slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;

              if(master->write_user_prot_reg)

                     slave->mtd.write_user_prot_reg = part_write_user_prot_reg;

              if (master->sync)

                     slave->mtd.sync = part_sync;

              if (!i && master->suspend && master->resume) {

                            slave->mtd.suspend = part_suspend;

                            slave->mtd.resume = part_resume;

              }

              if (master->writev)

                     slave->mtd.writev = part_writev;

              if (master->readv)

                     slave->mtd.readv = part_readv;

              if (master->writev_ecc)

                     slave->mtd.writev_ecc = part_writev_ecc;

              if (master->readv_ecc)

                     slave->mtd.readv_ecc = part_readv_ecc;

              if (master->lock)

                     slave->mtd.lock = part_lock;

              if (master->unlock)

                     slave->mtd.unlock = part_unlock;

              if (master->block_isbad)

                     slave->mtd.block_isbad = part_block_isbad;

              if (master->block_markbad)

                     slave->mtd.block_markbad = part_block_markbad;

              slave->mtd.erase = part_erase;

 

……..

}

接着看剩下的代码:

Drivers/mtd/mtdpart.c:

int add_mtd_partitions(struct mtd_info *master,

                         const struct mtd_partition *parts,

                         int nbparts)

{

…….

        /*初始化其他一些参数*/

              slave->master = master;   //这里的master就是上面分析的那个

/*partition在整个设备上的offset,可参看前面的partition的分区信息, 以后对该partition的操作都是在这段区域内进行的*/

              slave->offset = parts[i].offset;     

slave->index = i;

 

              if (slave->offset == MTDPART_OFS_APPEND)

                     slave->offset = cur_offset;

              if (slave->offset == MTDPART_OFS_NXTBLK) {

                     u_int32_t emask = master->erasesize-1;

                     slave->offset = (cur_offset + emask) & ~emask;

                     if (slave->offset != cur_offset) {

                            printk(KERN_NOTICE "Moving partition %d: "

                                   "0x%08x -> 0x%08x/n", i,

                                   cur_offset, slave->offset);

                     }

              }

              if (slave->mtd.size == MTDPART_SIZ_FULL)

                     slave->mtd.size = master->size - slave->offset;

              cur_offset = slave->offset + slave->mtd.size;

      

              printk (KERN_NOTICE "0x%08x-0x%08x : /"%s/"/n", slave->offset,

                     slave->offset + slave->mtd.size, slave->mtd.name);

 

              /* let's do some sanity checks */

        /*调整参数*/

              if (slave->offset >= master->size) {

                            /* let's register it anyway to preserve ordering */

                     slave->offset = 0;

                     slave->mtd.size = 0;

                     printk ("mtd: partition /"%s/" is out of reach -- disabled/n",

                            parts[i].name);

              }

        /*调整partition大小, 因为有时候可能我们分区的时候出错了*/

              if (slave->offset + slave->mtd.size > master->size) {

                     slave->mtd.size = master->size - slave->offset;

                     printk ("mtd: partition /"%s/" extends beyond the end of device /"%s/" -- size truncated to %#x/n",

                            parts[i].name, master->name, slave->mtd.size);

              }

              if (master->numeraseregions>1) {

                     /* Deal with variable erase size stuff */

                     int i;

                     struct mtd_erase_region_info *regions = master->eraseregions;

                    

                     /* Find the first erase regions which is part of this partition. */

                     for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++)

                            ;

 

                     for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) {

                            if (slave->mtd.erasesize < regions[i].erasesize) {

                                   slave->mtd.erasesize = regions[i].erasesize;

                            }

                     }

              } else {

                     /* Single erase size */

                     slave->mtd.erasesize = master->erasesize;

              }

        /*初始化partition的各种属性*/

              if ((slave->mtd.flags & MTD_WRITEABLE) &&

                  (slave->offset % slave->mtd.erasesize)) {

                     /* Doesn't start on a boundary of major erase size */

                     /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */

                     slave->mtd.flags &= ~MTD_WRITEABLE;

                     printk ("mtd: partition /"%s/" doesn't start on an erase block boundary -- force read-only/n",

                            parts[i].name);

              }

              if ((slave->mtd.flags & MTD_WRITEABLE) &&

                  (slave->mtd.size % slave->mtd.erasesize)) {

                     slave->mtd.flags &= ~MTD_WRITEABLE;

                     printk ("mtd: partition /"%s/" doesn't end on an erase block -- force read-only/n",

                            parts[i].name);

              }

 

              /* copy oobinfo from master */

              memcpy(&slave->mtd.oobinfo, &master->oobinfo, sizeof(slave->mtd.oobinfo));

 

              if(parts[i].mtdp)

              {     /* store the object pointer (caller may or may not register it */

                     *parts[i].mtdp = &slave->mtd;

                     slave->registered = 0;

              }

              else

              {

                     /* register our partition */

                     add_mtd_device(&slave->mtd);   /*最后把MTD注册进系统*/

                     slave->registered = 1;

              }

       }

       return 0;

}

    OK, 这个函数主要就是为每个partition分配一个代表该partition的对象MTD(即面向上层应用的那个MTD), 并把该mtd注册进系统中去, 即让上层应用能看到并使用这个设备.

下面我们在看add_mtd_device()

Drivers/mtd/mtdcore.c:

int add_mtd_device(struct mtd_info *mtd)

{

       int i;

 

       down(&mtd_table_mutex);

 

       for (i=0; i < MAX_MTD_DEVICES; i++)  

              if (!mtd_table[i]) {   /*获取列表中的一个空闲项*/

                     struct list_head *this;

            /*把我们的mtd保存在该列表项中去*/

                     mtd_table[i] = mtd;

                     mtd->index = i;

                     mtd->usecount = 0;

 

                     DEBUG(0, "mtd: Giving out device %d to %s/n",i, mtd->name);

                     /* No need to get a refcount on the module containing

                        the notifier, since we hold the mtd_table_mutex */

             /*通知每个notifier有一个mtd设备注册了*/

                     list_for_each(this, &mtd_notifiers) {

                            struct mtd_notifier *not = list_entry(this, struct mtd_notifier, list);

                            not->add(mtd);  /*notifyadd回调函数*/

                     }

                    

                     up(&mtd_table_mutex);

                     /* We _know_ we aren't being removed, because

                        our caller is still holding us here. So none

                        of this try_ nonsense, and no bitching about it

                        either. :) */

                     __module_get(THIS_MODULE);

                     return 0;

              }

      

       up(&mtd_table_mutex);

       return 1;

}

mtd_table[]保存了系统中存在的mtd设备的一个列表, 这个函数就是把代表一个partitionMTD保存到系统的一个全局MTD列表中去, 并调用每个notifieradd回调函数, 以通知他们有个MTD设备注册了.

好的,接下来就是要讲解notifier的回调函数了, 还记得notifier是在什么时候注册的吗? 呵呵, mtdchar, mtdblock在初始化的时候都有注册notifier, 我们在回顾下:

Drivers/mtd/mtdchar.c:

static struct mtd_notifier notifier = {  /*mtdchar notifier*/

       .add = mtd_notify_add,  

       .remove  = mtd_notify_remove,

};

 

static inline void mtdchar_devfs_init(void)

{

       devfs_mk_dir("mtd");

       register_mtd_user(&notifier);   /*这里就是注册notifier*/

}

同样在看mtdblock:

Drivers/mtd/mtd_blkdevs.c:

static struct mtd_notifier blktrans_notifier = {

       .add = blktrans_notify_add,

       .remove = blktrans_notify_remove,

};

 

int register_mtd_blktrans(struct mtd_blktrans_ops *tr)

{

       int ret, i;

 

       /* Register the notifier if/when the first device type is

          registered, to prevent the link/init ordering from fucking

          us over. */

       if (!blktrans_notifier.list.next)

              register_mtd_user(&blktrans_notifier);  /*这里就是注册notifier*/

…..

}

下面我们就以block为例讲解.

Drivers/mtd/mtd_blkdevs.c:

static void blktrans_notify_add(struct mtd_info *mtd)

{

       struct list_head *this;

 

       if (mtd->type == MTD_ABSENT)

              return;

 

       list_for_each(this, &blktrans_majors) {

              struct mtd_blktrans_ops *tr = list_entry(this, struct mtd_blktrans_ops, list);

 

              tr->add_mtd(tr, mtd);  /*干事实的函数*/

       }

 

}

这个函数只是一个幌子, 真正干实事的是tr->add_mtd(tr, mtd);   mtd_blktrans_ops对象也是在mtdblock初始化的时候设置好的, 具体请看前面的分析, 这里就是调用mtdblock_add_mtd:

Drivers/mtd/mtdblock.c:

static void mtdblock_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)

{

    /*分配一个代表MTD block的设备*/

       struct mtd_blktrans_dev *dev = kmalloc(sizeof(*dev), GFP_KERNEL);  

 

       if (!dev)

              return;

 

       memset(dev, 0, sizeof(*dev));

     /*初始化这个设备*/

       dev->mtd = mtd;

       dev->devnum = mtd->index;

       dev->blksize = 512;

       dev->size = mtd->size >> 9;

       dev->tr = tr;

 

       if (!(mtd->flags & MTD_WRITEABLE))

              dev->readonly = 1;

 

       add_mtd_blktrans_dev(dev);   /*添加到系统中去*/

}

核心函数还是add_mtd_blktrans_dev, 我们接着看:

Drivers/mtd/mtd_blkdevs.c:

int add_mtd_blktrans_dev(struct mtd_blktrans_dev *new)

{

       struct mtd_blktrans_ops *tr = new->tr;

       struct list_head *this;

       int last_devnum = -1;

       struct gendisk *gd;

 

       if (!down_trylock(&mtd_table_mutex)) {

              up(&mtd_table_mutex);

              BUG();

       }

   

    /*首先是为新设备获取设备号*/

       list_for_each(this, &tr->devs) {

              struct mtd_blktrans_dev *d = list_entry(this, struct mtd_blktrans_dev, list);

              if (new->devnum == -1) {

                     /* Use first free number */

                     if (d->devnum != last_devnum+1) {

                            /* Found a free devnum. Plug it in here */

                            new->devnum = last_devnum+1;

                            list_add_tail(&new->list, &d->list);

                            goto added;

                     }

              } else if (d->devnum == new->devnum) {

                     /* Required number taken */

                     return -EBUSY;

              } else if (d->devnum > new->devnum) {

                     /* Required number was free */

                     list_add_tail(&new->list, &d->list);

                     goto added;

              }

              last_devnum = d->devnum;

       }

       if (new->devnum == -1)

              new->devnum = last_devnum+1;

 

       if ((new->devnum << tr->part_bits) > 256) {

              return -EBUSY;

       }

 

       init_MUTEX(&new->sem);

       list_add_tail(&new->list, &tr->devs);   /*把该设备链入tr中去*/

 added:

       if (!tr->writesect)

              new->readonly = 1;

     /*以下是block驱动方面的东西了*/

       gd = alloc_disk(1 << tr->part_bits);   /*block设备分配对象,*/

       if (!gd) {

              list_del(&new->list);

              return -ENOMEM;

       }

       gd->major = tr->major;  /*主设备号*/

       gd->first_minor = (new->devnum) << tr->part_bits;   /*次设备号*/

       gd->fops = &mtd_blktrans_ops;  /*设备操作集*/

      

       snprintf(gd->disk_name, sizeof(gd->disk_name),

               "%s%c", tr->name, (tr->part_bits?'a':'0') + new->devnum);

       snprintf(gd->devfs_name, sizeof(gd->devfs_name),

               "%s/%c", tr->name, (tr->part_bits?'a':'0') + new->devnum);

 

       /* 2.5 has capacity in units of 512 bytes while still

          having BLOCK_SIZE_BITS set to 10. Just to keep us amused. */

       set_capacity(gd, (new->size * new->blksize) >> 9);

 

       gd->private_data = new;

       new->blkcore_priv = gd;

       gd->queue = tr->blkcore_priv->rq;

 

       if (new->readonly)

              set_disk_ro(gd, 1);

 

       add_disk(gd);   /*block设备添加入系统, 创建设备文件*/

      

       return 0;

}

这个函数涉及到了block驱动的编写, 可参考相关文档, 该函数主要就是完成mtd block设备的上层设备文件的创建及和具体的设备操作函数集关联起来.

Drivers/mtd/mtd_blkdevs.c:

struct block_device_operations mtd_blktrans_ops = {

       .owner           = THIS_MODULE,

       .open             = blktrans_open,

       .release   = blktrans_release,

       .ioctl              = blktrans_ioctl,

};

当用户层open我们的mtd设备时, 会调用blktrans_open函数.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值