书生·浦语大模型第二期实战营第五节-LMDeploy 量化部署 LLM 实践 笔记和作业

本文介绍了如何使用LMDeploy进行LLM-VLM的量化部署,涉及模型部署、HuggingFace社区的使用、TurboMind推理引擎的优化、以及Transformer库的应用。还讨论了在国内访问和模型转换的问题。
部署运行你感兴趣的模型镜像

来源:

视频教程:LMDeploy 量化部署 LLM-VLM 实践

文字教程:LMDeploy 量化部署 LLM-VLM 实践

作业来源:LMDeploy 量化部署 LLM-VLM 实践

1.笔记

1.1 模型部署

1.2 面临的挑战

1.3 模型剪枝

1.4 知识蒸馏

1.5 LMDeploy简介 

2. LMDeploy 量化部署 LLM 实践

2.1 LMDeploy模型对话(chat)

2.1.1 HuggingFace

HuggingFace是一个高速发展的社区,包括Meta、Google、Microsoft、Amazon在内的超过5000家组织机构在为HuggingFace开源社区贡献代码、数据集和模型。可以认为是一个针对深度学习模型和数据集的在线托管社区,如果你有数据集或者模型想对外分享,网盘又不太方便,就不妨托管在HuggingFace。

托管在HuggingFace社区的模型通常采用HuggingFace格式存储,简写为HF格式

但是HuggingFace社区的服务器在国外,国内访问不太方便。国内可以使用阿里巴巴的MindScope社区,或者上海AI Lab搭建的OpenXLab社区,上面托管的模型也通常采用HF格式

2.1.2 TurboMind

TurboMind是LMDeploy团队开发的一款关于LLM推理的高效推理引擎,它的主要功能包括:LLaMa 结构模型的支持,continuous batch 推理模式和可扩展的 KV 缓存管理器。

TurboMind推理引擎仅支持推理TurboMind格式的模型。因此,TurboMind在推理HF格式的模型时,会首先自动将HF格式模型转换为TurboMind格式的模型。该过程在新版本的LMDeploy中是自动进行的,无需用户操作。

几个容易迷惑的点:

  • TurboMind与LMDeploy的关系:LMDeploy是涵盖了LLM 任务全套轻量化、部署和服务解决方案的集成功能包,TurboMind是LMDeploy的一个推理引擎,是一个子模块。LMDeploy也可以使用pytorch作为推理引擎。
  • TurboMind与TurboMind模型的关系:TurboMind是推理引擎的名字,TurboMind模型是一种模型存储格式,TurboMind引擎只能推理TurboMind格式的模型。

2.2 下载模型

2.3 使用Transformer库运行模型

 2.4 使用LMDeploy与模型对话

InternLM2-Chat-1.8B 模型对话 

您可能感兴趣的与本文相关的镜像

ACE-Step

ACE-Step

音乐合成
ACE-Step

ACE-Step是由中国团队阶跃星辰(StepFun)与ACE Studio联手打造的开源音乐生成模型。 它拥有3.5B参数量,支持快速高质量生成、强可控性和易于拓展的特点。 最厉害的是,它可以生成多种语言的歌曲,包括但不限于中文、英文、日文等19种语言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天寒心亦热

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值