- 博客(47)
- 收藏
- 关注
转载 来自贴吧的一个题目
\[\Large\displaystyle \int_{0}^{1}\frac{\ln\left ( x+\sqrt{x^{2}+1} \right )}{x}\mathrm{d}x\]\(\Large\mathbf{Solution:}\)注意到:\[\int_{0}^{1}\frac{\ln\left ( x+\sqrt{x^{2}+1} \right )}{x}\mathr...
2016-06-06 14:16:00
222
转载 鬼斧神工:求n维球的体积
原文地址:http://spaces.ac.cn/archives/3154/原文作者:苏剑林标准思路简单来说,\(n\)维球体积就是如下\(n\)重积分\[V_n(r)=\int_{x_1^2+x_2^2+\dots+x_n^2\leq r^2}\mathrm{d}x_1 \mathrm{d}x_2\dots \mathrm{d}x_n\]用更加几何的思路,我们通过一组平行...
2016-05-27 09:09:00
475
转载 一个双曲函数的积分
\[\Large\displaystyle \int^{\infty}_{0}\frac{\tanh\left(\, x\,\right)}{x\left[\, 1 - 2\cosh\left(\, 2x\,\right)\,\right]^{2}}\,{\rm d}x\]\(\Large\mathbf{Solution:}\)A possible way I see of do...
2016-05-15 21:06:00
1059
转载 一个超几何函数$_3F_2$的积分
\[\Large\displaystyle \int_0^\infty{_3F_2}\left(\begin{array}c\dfrac58,\dfrac58,\dfrac98\\\dfrac12,\dfrac{{13}}8\end{array}\middle|\ {-x}\right)^2\frac{\mathrm{d}x}{\sqrt x}\]\(\Large\mathbf{So...
2016-05-15 20:51:00
288
转载 复杂的对数积分(八)
\[\Large\displaystyle \int_0^\infty\frac{\ln\left(1+x+\sqrt{x^2+2\,x}\right)\,\ln\left(1+\sqrt{x^2+2\,x+2}\right)}{x^2+2x+1}\mathrm dx\]\(\Large\mathbf{Solution:}\)This integral can be solved ...
2016-05-14 21:52:00
166
转载 一个有意思的对数积分的一般形式
\[\Large\displaystyle\int_0^\infty\frac{\ln\left(\displaystyle\frac{1+x^{4+\sqrt{15\vphantom{\large A}}}}{1+x^{2+\sqrt{3\vphantom{\large A}}}}\right)}{\left(1+x^2\right)\ln x}\mathrm dx=\frac{\pi...
2016-05-14 21:43:00
191
转载 复杂的对数积分(七)
\[\Large\displaystyle \int_0^1\frac{\ln x\ln^2(1+x)}{x}\ \mathrm dx\]\(\Large\mathbf{Solution:}\)\[\begin{align*}\int_0^1\frac{\ln x\ln^2(1+x)}{x}\ \mathrm dx&=\frac{1}{2}\ln^2 x\ln^2(1+x...
2016-05-14 20:44:00
179
转载 Logarithmic-Trigonometric积分系列(二)
\[\Large\displaystyle \int_0^{\pi/2}\ln^2(\sin x)\ln(\cos x)\tan x \,{\rm d}x\]\(\Large\mathbf{Solution:}\)Let \(J\) donates the integral and it is easy to see that\[\begin{align*}J&=\in...
2016-05-13 10:58:00
145
转载 Logarithmic-Trigonometric积分系列(一)
\[\Large\displaystyle \int_{0}^{\frac{\pi }{2}}x^{2}\ln\left ( \sin x \right )\ln\left ( \cos x \right )\mathrm{d}x\]\(\Large\mathbf{Solution:}\)Tools Needed\[\frac{1}{k\left ( j- k \right )^...
2016-05-13 10:48:00
159
转载 Some series and integrals involving the Riemann zeta function binomial coefficients and the harmonic...
链接:http://pan.baidu.com/s/1eSNkz4Y转载于:https://www.cnblogs.com/Renascence-5/p/5488448.html
2016-05-13 10:21:00
93
转载 Euler Sums系列(六)
\[\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}\]\(\Large\mathbf{Solution:}\)Let \(S\) denote the sum. Then\[\begin{align*}S=\sum_{n=1}^\infty \frac{H_{2n}}{n(6n+1)} &= \...
2016-05-12 16:24:00
161
转载 Euler Sums系列(五)
\[\Large\displaystyle \sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}\]where \(\widetilde{H_n}\) is the alternating harmonic number.\(\Large\mathbf{Solution:}\)Namely,\[\widetilde{H_n} = \...
2016-05-12 16:09:00
150
转载 级数欣赏
\[\sum_{n = 1}^\infty {\frac{1}{{{n^3}}}} \left( {\sum\limits_{k = 1}^n {\frac{{{{\left( { - 1} \right)}^{k - 1}}}}{k}} } \right) = \frac{7}{4}\zeta \left( 3 \right)\ln 2 - \frac{{{\pi ^4}}}{{28...
2016-05-12 15:40:00
99
转载 两个椭圆积分的比值
计算下面两个积分的比值:\[\Large\displaystyle \int_{0}^{1}\frac{1}{\sqrt{1+t^{4}}}\mathrm{d}t~,~\int_{0}^{1}\frac{1}{\sqrt{1-t^{4}}}\mathrm{d}t\]\(\Large\mathbf{Solution:}\)由\[\begin{align*}\int_{0}^{1...
2016-05-11 20:00:00
280
转载 一个简单的对数积分
\[\Large\displaystyle \int_{0}^{1}\frac{\ln\left ( 1+x^{2} \right )}{1+x^{2}}\mathrm{d}x\]\(\Large\mathbf{Solution:}\)方法一:考虑含参积分\[\mathcal{I}\left ( \alpha \right )=\int_{0}^{1}\frac{\ln\lef...
2016-05-11 19:52:00
432
转载 两个Beta函数类型的积分及其一般形式
\[\Large\displaystyle \int_{0}^{1}\frac{\sqrt[4]{x\left ( 1-x \right )^{3}}}{\left ( 1+x \right )^{3}}\mathrm{d}x~~,~~\int_{0}^{1}\frac{\sqrt[3]{x\left ( 1-x \right )^{2}}}{\left ( 1+x \right )^{...
2016-05-11 19:33:00
3091
转载 【转载】巴塞尔问题(Basel Problem)的多种解法
如何计算 \(\displaystyle \zeta \left ( 2 \right )=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots =~?\) 这个问题是在1644年由意大利数学家蒙哥利(Pietro Mengoli)提出的,而大数学家欧拉于1735年第一次解决了这个问题。他得出著名的结果:\[\Huge\boxed...
2016-05-11 16:43:00
2283
转载 两本关于各种刁钻积分计算的书
1.Irresistible Integralshttp://pan.baidu.com/s/1c2z7QWo2.Inside Interesting Integralshttp://pan.baidu.com/s/1jI6Nkf8转载于:https://www.cnblogs.com/Renascence-5/p/5482321.html
2016-05-11 16:19:00
151
转载 一个超几何函数类型的积分
\[\Large\displaystyle \int_{0}^{1}x\sqrt{1+x^{3}}\mathrm{d}x\]\(\Large\mathbf{Solution:}\)易知\[\int_{0}^{1}x\sqrt{1+x^{3}}\mathrm{d}x=\frac{1}{3}\int_{0}^{1}x^{-\frac{1}{3}}\left ( 1+x \right ...
2016-05-10 20:46:00
975
转载 一个取整函数积分的一般形式
\[\Large\displaystyle \int_{0}^{[x]}\left ( t-\left [ t \right ] \right )\mathrm{d}t=\frac{[x]}{2}\]\(\Large\mathbf{Proof:}\)我们来看更一般的形式,令\(m=\left \lfloor a \right \rfloor\),有\[\begin{align*}...
2016-05-10 20:41:00
1582
转载 一个看似简单的积分
\[\Large\displaystyle \int_{0}^{1}\left [ \frac{1+\sqrt{1-x}}{x} +\frac{2}{\ln\left ( 1-x \right )}\right ]\mathrm{d}x\]\(\Large\mathbf{Solution:}\)方法一:令\(\ln(1-x)=-t\),有\[\begin{align*}\int...
2016-05-10 20:30:00
97
转载 Clausen Functions (and related series, functions, integrals)
Since the Clausen functions are intimately related to a number of other important special functions, such as Inverse Tangent Integrals, Polylogarithms, Polygamma Functions, Zeta Functions, and mo...
2016-05-10 19:36:00
187
转载 高次arccos积分
\[\Large\displaystyle \int_0^{1} \frac{\arccos^4 \left(x^2\right)}{\sqrt{1-x^2}}\,\mathrm{d}x\]\(\Large\mathbf{Solution:}\)Let \(I\) denote the integral. Using the substitution \(x=\sqrt{\cos ...
2016-05-09 20:29:00
748
转载 复杂的对数积分(六)
\[\Large\displaystyle \int_0^1 \dfrac{\operatorname{Li}_2\left(\dfrac{x}{4}\right)}{4-x}\ln\left(\dfrac{1+\sqrt{1-x}}{1-\sqrt{1-x}}\right)\mathrm{d}x=\dfrac{\pi^4}{1944}\]\(\Large\mathbf{Proof:...
2016-05-09 20:10:00
183
转载 一组关于{x}的积分
\[\Large\displaystyle \int_{0}^{1}\left \{ \frac{1}{x} \right \}\mathrm{d}x~,~\int_{0}^{1}\left \{ \frac{1}{x} \right \}^{2}\mathrm{d}x~,~\int_{0}^{1}\left \{ \frac{1}{x} \right \}^{3}\mathrm{d}x...
2016-05-09 20:04:00
437
转载 复杂的对数积分(五)
\[\Large\displaystyle \int_0^1\frac{\ln^3(1+x)\,\ln^3x}x\mathrm{d}x\]\(\Large\mathbf{Solution:}\)Using the following known results:\[\begin{align*}\sum_{n=1}^{\infty }\frac{H_n}{n2^{n}}&...
2016-05-09 17:16:00
193
转载 复杂的对数积分(四)
\[\Large\displaystyle \int_0^1\frac{\ln^3(1+x)\,\ln^2x}x\mathrm{d}x\]\(\Large\mathbf{Solution:}\)I will be using the following results:\[2\sum^\infty_{n=1}\frac{H_n}{n^q}=(q+2)\zeta(q+1)-\sum...
2016-05-05 17:11:00
107
转载 一个超几何函数等式
\[\Large\displaystyle {\;}_3F_2\left(\frac{1}{2},\frac{1}{2},\frac{1}{2};1,\frac{3}{2};1 \right)=\frac{4\mathbf{G}}{\pi}\]\(\Large\mathbf{Proof:}\)Well, after simplifying the pochhammer symbol...
2016-05-05 11:09:00
285
转载 复杂的对数积分(三)
\[\Large\displaystyle \int_0^\infty \frac{\ln \left(1+\dfrac{\pi^2}{4x} \right)}{e^{\sqrt{x}}-1}\mathrm{d}x\]\(\Large\mathbf{Solution:}\)Step 1 - SplitLet \(\displaystyle I=\int_0^\infty \fra...
2016-05-04 20:08:00
216
转载 一个含有伽马函数的级数
\[\Large\displaystyle \sum_{n=1}^\infty\frac{\Gamma\left(n+\dfrac{1}{2}\right)}{(2n+1)^4\,4^n\,n!}\]\(\Large\mathbf{Solution:}\)First, in view of Legrende's duplication formula,\[\begin{align...
2016-05-04 16:30:00
342
转载 Euler Sums系列(四)
\[\Large\displaystyle \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=\mathbf{G}-\frac{\pi}{2}\ln(2)\]\(\Large\mathbf{Proof:}\)\(\Large\mathbf{Method~One:}\)Using the relation \(\displaystyle H_{n}...
2016-05-04 16:05:00
100
转载 一个含有Fibonacci Number的级数
\[\Large\displaystyle \sum_{n=0}^\infty \frac{1}{F_{2n+1}+1}=\frac{\sqrt5}{2}\]\(\Large\mathbf{Proof:}\)Let \(\phi=\dfrac{1+\sqrt{5}}{2}\) denote the golden ratio. Then consider the partial su...
2016-05-04 14:35:00
131
转载 一个含有超几何函数的积分
\[\Large\int_0^{\large \frac{\pi}{2}} \ln^2\left(\tan\frac{x}{2}\right){ _3F_2}\left(\frac12,1,1;\frac32,\frac32;\sin^2 x \right)\mathrm{d}x = \frac{5 \pi^5}{384}\]\(\Large\mathbf{Proof:}\)The...
2016-05-02 20:52:00
354
转载 一类Log-Gamma积分的一般形式
\[\Large\int_{0}^{z}x^{t}\ln\Gamma \left ( 1+x \right )\mathrm{d}x~,~z>0\, ,\, t\in N^{*}\]\(\Large\mathbf{Solution:}\)Notice that\[\begin{align*}\int_{0}^{z}x^{t}\ln\Gamma \left ( 1+x \r...
2016-04-27 19:46:00
643
转载 一个含有Zeta函数的级数
\[\Large\sum_{k=1}^{\infty}\frac{(2^{2k-1}-2)(4^{2k+1}-3^{2k+1})}{144^k\,k\,(2k+1)}\zeta(2k)\]\(\Large\mathbf{Solution:}\)Within the interval \(\displaystyle 0\ < x < \pi/2\,\), the logt...
2016-04-27 19:12:00
159
转载 Euler Sums系列(三)
\[\Large\sum_{n=1}^{\infty}\frac{\left(H_{n}^{(2)}\right)^{2}}{n^{2}}=\frac{19}{24}\zeta(6)+\zeta^{2}(3)\]\(\Large\mathbf{Proof:}\)We use the Abel's rearrangement over the \(N\)-th partial sum...
2016-04-27 18:58:00
108
转载 Euler Sums系列(二)
\[\Large\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^2}=\frac{21}{16}\zeta(3)\]\(\Large\mathbf{Proof:}\)Let \(\displaystyle S_1=\sum_{n=1}^\infty \frac{H_n}{n^2}\) and \(\displaystyle S_2 = \sum_{...
2016-04-27 17:25:00
137
转载 一个arctan积分的两种解法
\[\Large\int_{0}^{1}\frac{\arctan x}{\sqrt{1-x^{2}}}\mathrm{d}x\]\(\Large\mathbf{Solution:}\)首先第一种做法,含参积分.不多说直接上图第二种方法则是利用级数,易知\[\begin{align*}\int_{0}^{1}\frac{\arctan x}{\sqrt{1-x^{2}}}...
2016-04-27 12:43:00
3117
转载 一个Log-Tan积分
\[\Large\int_{0}^{\pi }\theta \ln\tan\frac{\theta }{2}\mathrm{d}\theta \]\(\Large\mathbf{Solution:}\)显然\[\int_{0}^{\pi }\theta \ln\tan\frac{\theta }{2}\mathrm{d}\theta =4\int_{0}^{\pi /2}x\ln...
2016-04-26 21:39:00
195
转载 【★】四本非常有用的工具书!
1.Table of Integrals,Series and Products , Eighth Edition , I.S.Gradshteyn, I.M.Ryzhik这就是众所周知的"积分大典",也是最新版,包含了巨量的积分公式,绝对是值得拥有的,遗憾的是只有公式,没有证明,当然,在书的开头作者给出了一个网站,上面有部分公式的证明.http://pan.baidu.com/sh...
2016-04-26 21:00:00
320
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人