一个超几何函数$_3F_2$的积分

本文详细解析了一类特殊参数下的积分问题,给出了具体求解过程及最终答案,涉及高阶函数和复杂数学表达式的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

\[\Large\displaystyle \int_0^\infty{_3F_2}\left(\begin{array}c\dfrac58,\dfrac58,\dfrac98\\\dfrac12,\dfrac{{13}}8\end{array}\middle|\ {-x}\right)^2\frac{\mathrm{d}x}{\sqrt x}\]


\(\Large\mathbf{Solution:}\)
Looks like we have a more general result:
\[\begin{align*} I(a)&=\int_0^\infty{_3F_2}\left(\begin{array}ca,a,a+\dfrac12\\\dfrac12,a+1\end{array}\middle|\ {-x}\right)^2\frac{\mathrm{d}x}{\sqrt x}\\ &=\frac{2^{4a-2}a^2}{\Gamma(2a)^2}G^{3~3}_{4~4}\left(1\middle|\begin{array}c\dfrac12,1,1;2a+\dfrac12\\2a-\dfrac12,2a-\dfrac12,2a;0\end{array}\right)\\ &=\frac{2^{4a-2}a^2}{\Gamma(2a)^2}G^{4~4}_{6~6}\left(1\middle|\begin{array}c\dfrac12,\dfrac12,1,1;2a,2a+\dfrac12\\2a-\dfrac12,2a-\dfrac12,2a,2a;0,\dfrac12\end{array}\right)\\ &=\frac{4\pi a^2}{\Gamma(2a)^2}G^{2~2}_{3~3}\left(1\middle|\begin{array}c1,1;4a\\4a-1,4a-1;0\end{array}\right) \end{align*}\]
Here Mathematica gives when \(a=\dfrac58\),
\[\begin{align*} &G^{2~2}_{3~3}\left(z\middle|\begin{array}c1,1;\dfrac52\\\dfrac32,\dfrac32;0\end{array}\right)\\ &=\frac{2\sqrt\pi}{3}\left(\ln(\sqrt z+\sqrt{z+1})+z^{3/2}\ln(1+\sqrt{z+1})-z^{3/2}\ln(\sqrt z)-\sqrt{z}\sqrt{z+1})\right) \end{align*}\]
So
\[G^{2~2}_{3~3}\left(1\middle|\begin{array}c1,1;\dfrac52\\\dfrac32,\dfrac32;0\end{array}\right)=\frac{2\sqrt\pi}{3}(2\ln(1+\sqrt2)-\sqrt2)\]
Now we have:
\[\large\boxed{\displaystyle \int_0^\infty{_3F_2}\left(\begin{array}c\dfrac58,\dfrac58,\dfrac98\\\dfrac12,\dfrac{{13}}8\end{array}\middle|\ {-x}\right)^2\frac{\mathrm{d}x}{\sqrt x}=\color{Blue} {\frac{50\,\pi^{3/2}}{3\,\Gamma^2\left(\dfrac14\right)}\Big(\ln\left(3+\sqrt8\right)-\sqrt2\Big)}}\]

转载于:https://www.cnblogs.com/Renascence-5/p/5496078.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值