测试环境:
PolarDB-X 标准版:16C64G(1台)
RDS MySQL5.7: 4C8G(4台)
ECS 压测机: 8C16G(1台)
RDS测试表 单表1亿,PolarDB-X +RDS x4分库分表,单表1亿
直连RDS:
MySQL [sysbenchtest]> show create table sbtest1;
+---------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Table | Create Table |
+---------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| sbtest1 | CREATE TABLE `sbtest1` (
`id` int(10) unsigned NOT NULL,
`k` int(10) unsigned NOT NULL DEFAULT '0',
`c` char(120) NOT NULL DEFAULT '',
`pad` char(60) NOT NULL DEFAULT '',
KEY `xid` (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 MAX_ROWS=1000000 |
+---------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)
MySQL [sysbenchtest]> explain update sbtest1 set k=100 where k=49910688;
+----+-------------+---------+------------+------+---------------+------+---------+------+----------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+------+---------------+------+---------+------+----------+----------+-------------+
| 1 | UPDATE | sbtest1 | NULL | ALL | NULL | NULL | NULL | NULL | 98517160 | 100.00 | Using where |
+----+-------------+---------+------------+------+---------------+------+---------+------+----------+----------+-------------+
1 row in set (0.00 sec)
MySQL [sysbenchtest]>
MySQL [sysbenchtest]> update sbtest1 set k=100 where k=49910688;
Query OK, 78 rows affected (5 min 43.04 sec)
Rows matched: 78 Changed: 78 Warnings: 0
直连RDS更新78条记录,单表1亿,执行了5min43s。
查看监控CPU消耗:

查看监控IO消耗:

PolarDB-X +RDS x4分库分表:
MySQL [polardb2]> show create table sbtest1;
+---------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Table | Create Table |
+---------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| sbtest1 | CREATE TABLE `sbtest1` (
`id` int(11) NOT NULL AUTO_INCREMENT BY GROUP,
`k` int(11) NOT NULL DEFAULT '0',
`c` char(120) NOT NULL DEFAULT '',
`pad` char(60) NOT NULL DEFAULT '',
KEY `id` (`id`)
) ENGINE = InnoDB AUTO_INCREMENT = 99999875 DEFAULT CHARSET = utf8mb4 dbpartition by hash(`id`) tbpartition by hash(`id`) tbpartitions 4 |
+---------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.04 sec)
MySQL [polardb2]> update sbtest1 set k=100 where k=49910688;
Query OK, 78 rows affected (1 min 13.94 sec)
PolarDB-X +RDS x4分库分表只用了1min13s就查询完毕。
查看监控CPU使用情况:

查看监控IO消耗:

总结:
对于慢DML(跑批), PolarDB-X +RDS执行过程中CPU使用率要高一些,IO资源消耗低一些,但是由于数据分布在4个RDS节点,总体耗时较短。
本文通过测试比较了PolarDB-X+RDS分库分表与直连RDS执行DML操作的性能。在1亿数据量的场景下,直连RDS更新78条记录耗时5分钟43秒,而PolarDB-X+RDS仅用1分钟13秒,显示了分布式数据库在处理大规模数据时的效率优势。虽然PolarDB-X在CPU使用上可能更高,但其IO消耗较低,并能有效分摊负载。
2619

被折叠的 条评论
为什么被折叠?



