Traffic Sign Recognition

该博客详细介绍了建立德国交通标志识别模型的过程,包括数据集概览、模型设计和测试、新图像预测等步骤。作者使用了灰度转换和简单归一化对图像进行预处理,并通过调整参数如学习率、批次大小和迭代次数优化模型。最终模型在训练集、验证集和测试集上的准确率分别为99.6%、98.0%和91.7%。此外,模型成功预测了5个新的交通标志图像,具有较高的预测信心。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Writeup


Build a Traffic Sign Recognition Project

The goals / steps of this project are the following:
* Load the data set (see below for links to the project data set)
* Explore, summarize and visualize the data set
* Design, train and test a model architecture
* Use the model to make predictions on new images
* Analyze the softmax probabilities of the new images
* Summarize the results with a written report


Writeup / README

1. Provide a Writeup / README that includes all the rubric points and how you addressed each one. You can submit your writeup as markdown or pdf. You can use this template as a guide for writing the report. The submission includes the project code.

You’re reading it! and here is a link to my project code

Data Set Summary & Exploration

1. Provide a basic summary of the data set and identify where in your code the summary was done. In the code, the analysis should be done using python, numpy and/or pandas methods rather than hardcoding results manually.

The code for this step is contained in the second code cell of the IPython notebook.

I just use the numpy library to calculate summary statistics of the traffic
signs data set:

  • The size of training set is 34799
  • The size of test set is 12630
  • The shape of a traffic sign image is (32, 32, 3)
  • The number of unique classes/labels in the data set is 43
2. Include an exploratory visualization of the dataset and identify where the code is in your code file.

The code for this step is contained in the third code cell of the IPython notebook.

import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots()

ax.hist(y_train, n_classes, normed=1, histtype='bar', facecolor='b', alpha=0.75)
ax.set_title('label frequency')
ax.set_xlabel('labels')
ax.set_ylabel('frequency')

plt.show()

Here is an exploratory visualization of the data set. Here I use matplot library function ax.hist() to directly plot the frequency of the labels.
这里写图片描述

Design and Test a Model Architecture

1. Describe how, and identify where in your code, you preprocessed the image data. What tecniques were chosen and why did you choose these techniques? Consider including images showing the output of each preprocessing technique. Pre-processing refers to techniques such as converting to grayscale, normalization, etc.

The code for this step is list here:

import cv2

# convert color image to gray-scale image,here we use opencv api function, 
# gray= R*0.299+G*0.587+B*0.114
def color2gray(image):
    gray_img=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
    return gray_img

def Images_color2Gray(image_group):
    X_train_gray=[]
    for train_image in image_group: 
        gray_img=color2gray(train_image)
        gray_img = gray_img[:, :, np.newaxis]
        X_train_gray.append(gray_img)

    return X_train_gray
##################################
# plot two images
fig, axs = plt.subplots(1,2, figsize=(5, 2))
axs = axs.ravel()

axs[0].axis('off')
axs[
### 关于交通标志数据集和识别技术 #### 数据集概述 为了训练YOLOv5模型或其他类似的深度学习框架,可以选择多个公开可用的数据集来实现交通标志的检测与分类任务。以下是几个常用的数据集: - **LISA Traffic Sign Dataset**: 这是一个包含超过47,000个交通标志实例的数据集,涵盖了诸如停止标志(stop sign)、让行标志(yield sign)以及速度限制标志等多种类型的交通标志[^1]。 - **German Traffic Sign Recognition Benchmark (GTSRB)**: 此德国交通标志识别数据集包含了超过50,000张图片,覆盖了常见的交通标志类别,如限速、停车、让行及警告标志等。 - **Mapillary Traffic Sign Dataset**: 提供来自全球各地的不同国家的交通标志图像,适合用于多类别标志检测的任务。 这些数据集不仅提供了丰富的标注信息,还能够帮助研究者探索不同的增强技术和算法优化策略。 #### 技术方法探讨 在交通标志识别领域,除了传统的卷积神经网络(CNN),还有其他先进的技术被广泛采用。例如,在某些研究中提到的方法包括但不限于以下几种: - 利用生成对抗网络(GAN)进行数据增广以提高模型鲁棒性。具体而言,CycleGAN 和 BbGAN 是两种常用的架构,它们通过模拟真实世界条件下的变化增强了数据多样性[^2]。 - 结合注意力机制与级联区域建议网络(R-CNN)构建更精确的目标定位系统。这种方法特别适用于处理样本不平衡问题并提升复杂场景中的表现效果[^2]。 #### 实验结果分析 对于具体的实验设置来说,可以参考一些成功的案例。比如在一个基于CNN和Keras库开发的项目中,研究人员通过对测试集(Test.csv)内的图像路径及其对应标签进行解析,并将每幅图缩放至固定尺寸(30x30像素),最终达到了约96%的整体准确率水平[^5]。 ```python import pandas as pd from sklearn.metrics import accuracy_score from tensorflow.keras.preprocessing.image import load_img, img_to_array def preprocess_image(image_path): image = load_img(image_path, target_size=(30, 30)) return img_to_array(image) test_data = pd.read_csv('Test.csv') images = test_data['Path'].apply(preprocess_image).tolist() labels = test_data['ClassId'].values.tolist() # Assume model is pre-trained and loaded here. predictions = model.predict(images) predicted_classes = np.argmax(predictions, axis=1) score = accuracy_score(labels, predicted_classes) print(f'Accuracy: {score * 100:.2f}%') ``` 上述代码片段展示了如何加载测试数据并对模型性能做出评估的过程。 --- 问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值