1102 Invert a Binary Tree (25 point(s))
The following is from Max Howell @twitter:
Google: 90% of our engineers use the software you wrote (Homebrew), but you can't invert a binary tree on a whiteboard so fuck off.
Now it's your turn to prove that YOU CAN invert a binary tree!
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤10) which is the total number of nodes in the tree -- and hence the nodes are numbered from 0 to N−1. Then N lines follow, each corresponds to a node from 0 to N−1, and gives the indices of the left and right children of the node. If the child does not exist, a -
will be put at the position. Any pair of children are separated by a space.
Output Specification:
For each test case, print in the first line the level-order, and then in the second line the in-order traversal sequences of the inverted tree. There must be exactly one space between any adjacent numbers, and no extra space at the end of the line.
Sample Input:
8
1 -
- -
0 -
2 7
- -
- -
5 -
4 6
Sample Output:
3 7 2 6 4 0 5 1
6 5 7 4 3 2 0 1
经验总结:
emmmmm 简单的划水题,可以在输入的时候就把左右结点颠倒,也可以在遍历的时候反着遍历,反正都可以啦~
AC代码
#include <cstdio>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
int in[10],level[10],lnum=0;
struct node
{
int v,left,right;
}tree[10];
void level_order(int s)
{
lnum=0;
queue<node> q;
q.push(tree[s]);
while(q.size())
{
node x=q.front();
q.pop();
level[lnum++]=x.v;
if(x.left!=-1)
q.push(tree[x.left]);
if(x.right!=-1)
q.push(tree[x.right]);
}
}
void in_order(int root)
{
if(root==-1)
return ;
if(tree[root].left!=-1)
in_order(tree[root].left);
in[lnum++]=root;
if(tree[root].right!=-1)
in_order(tree[root].right);
}
int main()
{
int n;
char a,b;
bool flag[10]={false};
scanf("%d",&n);
getchar();
for(int i=0;i<n;++i)
{
scanf("%c %c",&a,&b);
getchar();
if(a!='-')
{
tree[i].right=a-'0';
flag[a-'0']=true;
}
else
tree[i].right=-1;
if(b!='-')
{
tree[i].left=b-'0';
flag[b-'0']=true;
}
else
tree[i].left=-1;
tree[i].v=i;
}
int root;
for(root=0;root<n;++root)
{
if(flag[root]==false)
break;
}
level_order(root);
lnum=0;
in_order(root);
for(int i=0;i<n;++i)
printf("%d%c",level[i],i<n-1?' ':'\n');
for(int i=0;i<n;++i)
printf("%d%c",in[i],i<n-1?' ':'\n');
return 0;
}