Become A Hero HDU - 2654

本文介绍了一种求解特定数学问题的算法——对于给定的正整数n,找出在1到n范围内有多少个整数i满足i与n的最小公倍数小于i*n。通过使用欧拉函数来简化计算过程,该算法提供了一种高效的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


题意:输入n,求【1,n】中有多少个整数使得   LCM(  i  , n) < n * i

思路:

LCM(  a * b ) =   a *  b /gcd(a,b)

当gcd(a,b)=1时不满足   LCM(  i  , n) < n * i   ,即答案等于  n - n的欧拉函数值

n的欧拉函数值
可以先打表或者直接写欧拉函数

#include<stdio.h>
#define maxn 2000000
int p[maxn+1];
int oula(int a)
{
	if(a==1) return 1;
	int res=a;
	for(int i=2;i*i<=a;i++)
	{
		if(a%i==0)
		{
			res/=i;
			res*=(i-1);
			while(a!=1&&a%i==0) 
			a/=i;
		}
	}
	if(a!=1){
		res/=a;
	res*=(a-1);	
	}

	return res;
} 

void init()
{   int i,j; 
	for(i=1; i<=maxn; i++)
    p[i]=i;
    for(i=2; i<=maxn; i+=2)
    p[i]/=2;
    for(i=3; i<=maxn; i+=2)
    if(p[i]==i)
    {
        for(j=i; j<=maxn; j+=i)
            p[j]=p[j]/i*(i-1);
    }
}

int main()
{
	init();
	int t,n;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d",&n);
		//printf("%d\n",n-oula(n));
		printf("%d\n",n-p[n]);
	}
	return 0;
 } 


内容概要:本文档详细介绍了一个基于MATLAB实现的电力负荷预测项目,该项目运用遗传算法(GA)优化支持向量回归(SVR)和支持向量机(SVM)模型的超参数及特征选择。项目旨在解决电力系统调度、发电计划、需求侧响应等多个应用场景中的关键问题,特别是在应对高比例可再生能源接入带来的非线性、非平稳负荷预测挑战。文中涵盖了从数据接入、特征工程、模型训练到部署上线的全流程,包括详细的代码示例和GUI设计,确保方案的可复现性和实用性。 适用人群:具备一定编程基础,尤其是熟悉MATLAB语言和机器学习算法的研发人员;从事电力系统调度、电力市场交易、新能源消纳等相关领域的工程师和技术专家。 使用场景及目标:①通过构建面向小时级别的滚动预测,输出高分辨率负荷轨迹,为日内与日前滚动调度提供边际成本最小化的依据;②在负荷高峰和供给紧张时,通过价格信号或直接负荷控制实施需求侧响应,提升削峰效率并抑制反弹;③为灵活性资源(调峰机组、储能、可中断负荷)提供更清晰的出清路径,降低弃风弃光率,提升系统整体清洁度;④帮助市场主体更准确地评估边际出清价格变化,提高报价成功率与收益稳定性,同时降低由预测偏差带来的风险敞口;⑤在运维与审计场景中,对预测产生的原因进行说明,保障业务侧与监管侧的可追溯性。 阅读建议:此资源不仅提供了完整的代码实现和GUI设计,更注重于理解GA优化过程中涉及到的数据处理、特征构造、模型选择及评估等核心步骤。因此,在学习过程中,建议结合实际案例进行实践,并深入研究每个阶段的具体实现细节,特别是适应度函数的设计、超参数空间的定义以及多样性维护机制的应用。此外,关注项目中关于数据对齐、缺失值处理、特征标准化等方面的最佳实践,有助于提高模型的鲁棒性和泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值