LeetCode.M1302
题目:
题目大意:
如图所示。
数据范围:
如图所示
一 、解法一 :
思路:
由于知识的匮乏,先求出数的最大深度,然后再获得深度等于最大深度的节点之和。
代码:
//结构定义
class TreeNode{
TreeNode left, right;
int val;
public TreeNode() {
}
public TreeNode(int val) {
this.val = val;
}
public TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
class Solution {
//求数的最大深度
public int getTreeMaxDeepth(TreeNode root){
if (root == null)
return 0;
return Math.max(getTreeMaxDeepth(root.left), getTreeMaxDeepth(root.right)) + 1;
}
//获得深度等于最大深度的节点之和
public int getTreeMaxDeepthSum(TreeNode root, int deep, int maxdeepth){
if (deep > maxdeepth || root == null)
return 0;
if (deep == maxdeepth)
return root.val + getTreeMaxDeepthSum(root.left, deep + 1, maxdeepth) + getTreeMaxDeepthSum(root.right, deep + 1, maxdeepth);
else
return getTreeMaxDeepthSum(root.left, deep + 1, maxdeepth) + getTreeMaxDeepthSum(root.right, deep + 1, maxdeepth);
}
public int deepestLeavesSum(TreeNode root) {
int maxdeepth = getTreeMaxDeepth(root);
// System.out.println(maxdeepth);
int res = getTreeMaxDeepthSum(root, 1, maxdeepth);
return res;
}
}
public class Main {
public static void main(String[] args) {
Solution solution = new Solution();
TreeNode treeNode1 = new TreeNode(1);
TreeNode treeNode2 = new TreeNode(2);
TreeNode treeNode3 = new TreeNode(3);
treeNode1.left = treeNode2;
treeNode1.right = treeNode3;
TreeNode treeNode4 = new TreeNode(4);
TreeNode treeNode5 = new TreeNode(5);
treeNode2.left = treeNode4;
treeNode2.right = treeNode5;
TreeNode treeNode6 = new TreeNode(6);
treeNode3.right = treeNode6;
TreeNode treeNode7 = new TreeNode(7);
treeNode4.left = treeNode7;
TreeNode treeNode8 = new TreeNode(8);
treeNode6.right = treeNode8;
System.out.println(solution.deepestLeavesSum(treeNode1));
}
}
时空复杂度分析等:
- 时间复杂度 : O(n)
- 空间复杂度 : O(n)
二 、解法二 :
思路:
采用dfs,维护“最大深度”maxdeep,和处于“最大深度”的节点的和sum。
- 如果当前深度deep大于“最大深度”maxdeep,则将“最大深度”maxdeep更改为当前深度deep,相应的sum的值更改为当前节点的值(因为重新找到了一个“最大深度”maxdeep,所以sum要清零,再重新加上当前节点的值)。
- 如果当前深度deep等于“最大深度”maxdeep,则将当前节点的值val累加到sum中即可。
代码:
class Solution{
int sum = 0;
int maxdeep = 0;
public void dfs(TreeNode root, int deep){
if (root == null)
return;
if (deep > maxdeep){
maxdeep = deep;
sum = root.val;
}else if (deep == maxdeep){
sum += root.val;
}
dfs(root.left, deep + 1);
dfs(root.right, deep + 1);
}
public int deepestLeavesSum(TreeNode root){
dfs(root, 1);
return sum;
}
}
时空复杂度分析等:
- 时间复杂度 : O(n)
- 空间复杂度 : O(n)
三、解法三 :
思路:
采用bfs,层序遍历树,计算每一层的节点值的和sum,那么到了最后一层遍历时,则为计算的就是最深层的节点的和。
注意:使用size来记录本层节点的数量(当前queue中节点的数量),边遍历本层的节点(size个)边将下一层的子节点加入队列中,当遍历完size个本层节点时,queue中则保存的下一层的所有节点。这样就可以获得最后一层节点值的和。
代码:
class Solution{
public int deepestLeavesSum(TreeNode root){
Queue<TreeNode> queue = new ArrayDeque<>();
queue.add(root);
int sum = 0;
while (!queue.isEmpty()){
sum = 0;
int size = queue.size();
for (int i = 0; i < size; i ++ ){
TreeNode node = queue.poll();
sum += node.val;
if (node.left != null)
queue.add(node.left);
if (node.right != null)
queue.add(node.right);
}
}
return sum;
}
}
时空复杂度分析等:
- 时间复杂度 : O(n)
- 空间复杂度 : O(n)