HDU6060-RXD and dividing

RXD and dividing

                                                                Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
                                                                                        Total Submission(s): 1541    Accepted Submission(s): 664


Problem Description
RXD has a tree  T , with the size of  n . Each edge has a cost.
Define  f(S)  as the the cost of the minimal Steiner Tree of the set  S  on tree  T
he wants to divide  2,3,4,5,6,n  into  k  parts  S1,S2,S3,Sk ,
where  Si={2,3,,n}  and for all different  i,j  , we can conclude that  SiSj=
Then he calulates  res=ki=1f({1}Si) .
He wants to maximize the  res .
1kn106
the cost of each edge[1,105]
Si  might be empty.
f(S)  means that you need to choose a couple of edges on the tree to make all the points in  S  connected, and you need to minimize the sum of the cost of these edges.  f(S)  is equal to the minimal cost 
 

Input
There are several test cases, please keep reading until EOF.
For each test case, the first line consists of 2 integer  n,k , which means the number of the tree nodes , and  k  means the number of parts.
The next  n1  lines consists of 2 integers,  a,b,c , means a tree edge  (a,b)  with cost  c .
It is guaranteed that the edges would form a tree.
There are 4 big test cases and 50 small test cases.
small test case means  n100 .
 

Output
For each test case, output an integer, which means the answer.
 

Sample Input
  
  
5 4 1 2 3 2 3 4 2 4 5 2 5 6
 

Sample Output
  
  
27
 

Source
 

题意:给一个1到n的序列,除1外,将它们分成k个不相交的集合,现在每个集合加入1,求所有集合最小斯坦纳树和的最大值;

解题思路:若要使权值和最大,考虑每一条边的贡献次数,如果从父亲向下的一条边,子树大小小于k,设为x,下面至多被分为x个分块,该边被贡献x次,否则至多分成k个分块,该边贡献k次,所以每条边最大情况下应该被计算min(x,k)次,x为该边下方结点的子树大小



#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>

using namespace std;

#define LL long long
const int INF = 0x3f3f3f3f;

int n, k, u, v;
int s[1000009], nt[2000009], e[2000009], sum[1000009];
LL val[2000009], w, ans;

void dfs(int x, int fa)
{
    sum[x] = 1;
    for (int i = s[x]; ~i; i = nt[i])
    {
        if (e[i] == fa) continue;
        dfs(e[i], x);
        sum[x] += sum[e[i]];
        ans += 1LL*min(sum[e[i]], k)* val[i];
    }
}

int main()
{
    while (~scanf("%d%d", &n, &k))
    {
        memset(s, -1, sizeof s);
        int cnt = 0;
        for (int i = 1; i < n; i++)
        {
            scanf("%d%d%lld", &u, &v, &w);
            nt[cnt] = s[u], s[u] = cnt, e[cnt] = v, val[cnt++] = w;
            nt[cnt] = s[v], s[v] = cnt, e[cnt] = u, val[cnt++] = w;
        }
        ans = 0;
        dfs(1, 0);
        printf("%lld\n", ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值