1066. Root of AVL Tree (25)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.




Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print ythe root of the resulting AVL tree in one line.
Sample Input 1:5 88 70 61 96 120Sample Output 1:
70Sample Input 2:
7 88 70 61 96 120 90 65Sample Output 2:
88
题意:将n个数插入AVL树中,输出树的根节点
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
const int N = 1e3 + 10;
int n, x;
int rt,sz; //根节点;总结点个数,用于建立新节点
int son[N][2]; //记录左右儿子的标号
int h[N],a[N]; //记录该节点向下最远的高度,用于维持avl数的平衡 ; 记录节点的值,维持插入需要
int f[N]; //记录节点的父亲节点标号
int node(int x, int fa)//数组模拟,建立新节点,父亲节点为fa,值为x,此时高度为1,没有子节点。
{
a[sz] = x; f[sz] = fa; h[sz] = 1; memset(son[sz], 0,sizeof son[sz]); return sz++;
}
void Count(int x)//重新计算该节点高度
{
h[x] = max(h[son[x][0]], h[son[x][1]]) + 1;
}
void rotate(int x, int k)//旋转操作,x为节点编号,k为旋转类型,k=1时为右旋,k=0是为左旋
{
int y = f[x]; son[y][!k] = son[x][k];
if (son[x][k]) f[son[x][k]] = y;
if (f[y]) son[f[y]][y == son[f[y]][1]] = x;
f[x] = f[y]; f[y] = x; son[x][k] = y;
Count(y); Count(x);
}
/*
调整过程,根据avl树的性质,如果某个节点的左右高度差超过1,那么进行调整
需要注意的是,avl树的旋转都是三个节点之间的,x,F[x],F[F[x]]
并且分为两种,即x和F[x]都是同方向的,那么将F[x]向上旋转即可。
如果是不同方向,那么将x连续向上旋转两次。
*/
int change(int x)
{
for (int i = f[f[x]]; i; i = f[f[x]])
{
Count(f[x]); Count(i);
if (abs(h[son[i][0]] - h[son[i][1]]) > 1)
{
int y = x == son[f[x]][0], z = f[x] == son[i][0];
y^z ? (rotate(x, y), rotate(x, z)) : rotate(f[x], z);
}
else x = f[x];
}
while (f[x]) { Count(x); x = f[x]; }
return x;
}
void insert(int &rt, int x)//插入过程,像普通的排序二叉树一样插入,最后进行调整。
{
if (!rt) { rt = node(x, 0); return; }
for (int i = rt;; i = son[i][a[i] < x])
{
if (son[i][a[i] < x]) continue;
son[i][a[i] < x] = node(x, i);
rt = change(son[i][a[i] < x]); return;
}
}
int main()
{
while (~scanf("%d",&n))
{
rt = 0; sz = 1;
for(int i=1; i<=n; i++)
scanf("%d",&x), insert(rt, x);
printf("%d\n", a[rt]);
}
return 0;
}