1086. Tree Traversals Again (25)
An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.

Figure 1
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.
Output Specification:
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:6 Push 1 Push 2 Push 3 Pop Pop Push 4 Pop Pop Push 5 Push 6 Pop PopSample Output:
3 4 2 6 5 1
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
int n,x,a[35][2],flag;
char ch[10];
void dfs(int k)
{
if(a[k][0]!=-1) dfs(a[k][0]);
if(a[k][1]!=-1) dfs(a[k][1]);
if(flag) printf("%d",k);
else printf(" %d",k);
flag=0;
}
int main()
{
while(~scanf("%d",&n))
{
memset(a,-1,sizeof a);
stack<int>s;
int root=-1,pre;
for(int i=1;i<=n*2;i++)
{
scanf("%s",ch);
if(!strcmp(ch,"Push"))
{
scanf("%d",&x);
if(root==-1) {root=x;s.push(x);continue;}
if(!s.empty()&&a[s.top()][0]==-1) a[s.top()][0]=x;
else a[pre][1]=x;
s.push(x);
}
else
{
pre=s.top();
s.pop();
}
}
flag=1;
dfs(root);
printf("\n");
}
return 0;
}