PAT (Advanced Level) Practise 1103 Integer Factorization (30)

本文介绍了一种通过深度优先搜索加剪枝策略解决特定整数K-P分解问题的方法。目标是在给定正整数N、K及P的情况下,寻找K个正整数,使它们的P次幂之和等于N,并在多种解中找到元素和最大且序列最大的解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1103. Integer Factorization (30)

时间限制
1200 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K-P factorization of N for any positive integers N, K and P.

Input Specification:

Each input file contains one test case which gives in a line the three positive integers N (<=400), K (<=N) and P (1<P<=7). The numbers in a line are separated by a space.

Output Specification:

For each case, if the solution exists, output in the format:

N = n1^P + ... nK^P

where ni (i=1, ... K) is the i-th factor. All the factors must be printed in non-increasing order.

Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122 + 42 + 22 + 22 + 12, or 112 + 62 + 22 + 22 + 22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1, a2, ... aK } is said to be larger than { b1, b2, ... bK } if there exists 1<=L<=K such that ai=bi for i<L and aL>bL

If there is no solution, simple output "Impossible".

Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible


题意:给你一个n,k,p,让你找出一个有k个元素的序列,它们p次方的和等于n,若有多个,输出元素和最大的,若仍有多个,输出序列最大的

解题思路:dfs+剪枝


#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>

using namespace std;

#define LL long long
const int INF = 0x7FFFFFFF;

int n,k,p,ans[500],flag,a[500],ma,b[500];

int mypow(int x,int k)
{
    int ans=1;
    while(k)
    {
        if(k&1) ans*=x;
        k>>=1;
        x*=x;
    }
    return ans;
}

void dfs(int x,int sum,int pos)
{
    if(sum==n&&k==x)
    {
        int sum1=0;
        for(int i=0;i<k;i++) sum1+=a[i],b[i]=a[i];
        sort(b,b+k,greater<int>());
        int p=0;
        while(b[p]==ans[p]&&p<k)p++;
        if((b[p]>ans[p]&&p<k&&sum1==ma)||sum1>ma)
        {
            ma=sum1;
            for(int i=0;i<k;i++) ans[i]=b[i];
        }
        flag=1;
        return ;
    }
    int xx=mypow(pos,p);
    if(sum+(k-x)*xx>n||x>=k||sum>=n) return ;
    for(int i=pos; i<=20; i++)
    {
        a[x]=i;
        dfs(x+1,sum+mypow(i,p),i);
    }
}

int main()
{
    while(~scanf("%d%d%d",&n,&k,&p))
    {
        flag=0;
        ma=0;
        dfs(0,0,1);
        if(!flag) {printf("Impossible\n");continue;}
        printf("%d = %d^%d",n,ans[0],p);
        for(int i=1; i<k; i++)
            printf(" + %d^%d",ans[i],p);
        printf("\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值