Weak Pair
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 3320 Accepted Submission(s): 1016
Problem Description
You are given a
rooted
tree of
N
nodes, labeled from 1 to
N
. To the
i
th node a non-negative value
ai
is assigned.An
ordered
pair of nodes
(u,v)
is said to be
weak
if
(1) u is an ancestor of v (Note: In this problem a node u is not considered an ancestor of itself);
(2) au×av≤k .
Can you find the number of weak pairs in the tree?
(1) u is an ancestor of v (Note: In this problem a node u is not considered an ancestor of itself);
(2) au×av≤k .
Can you find the number of weak pairs in the tree?
Input
There are multiple cases in the data set.
The first line of input contains an integer T denoting number of test cases.
For each case, the first line contains two space-separated integers, N and k , respectively.
The second line contains N space-separated integers, denoting a1 to aN .
Each of the subsequent lines contains two space-separated integers defining an edge connecting nodes u and v , where node u is the parent of node v .
Constrains:
1≤N≤105
0≤ai≤109
0≤k≤1018
The first line of input contains an integer T denoting number of test cases.
For each case, the first line contains two space-separated integers, N and k , respectively.
The second line contains N space-separated integers, denoting a1 to aN .
Each of the subsequent lines contains two space-separated integers defining an edge connecting nodes u and v , where node u is the parent of node v .
Constrains:
1≤N≤105
0≤ai≤109
0≤k≤1018
Output
For each test case, print a single integer on a single line denoting the number of weak pairs in the tree.
Sample Input
1 2 3 1 2 1 2
Sample Output
1
Source
Recommend
wange2014
解题思路:树状数组+离散化
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
int vis[100005 * 2],n;
LL a[100005 * 2], b[100005 * 2], ans, k, xx[100005 * 2];
vector<int>g[100005];
LL lowbit(LL x)
{
return x&(-x);
}
void add(LL x, int val)
{
while (x <= 2 * n)
{
xx[x] += val;
x += lowbit(x);
}
}
LL getsum(LL x)
{
LL sum = 0;
while (x>0)
{
sum += xx[x];
x -= lowbit(x);
}
return sum;
}
void dfs(int s)
{
int Size = g[s].size();
LL sum = getsum(a[n + s]);
ans += sum;
add(a[s], 1);
for (int i = 0; i<Size; i++)
{
int v = g[s][i];
dfs(v);
}
add(a[s], -1);
}
int main()
{
int t;
scanf("%d", &t);
while (t--)
{
ans = 0;
memset(vis, 0, sizeof(vis));
memset(xx, 0, sizeof(xx));
for (int i = 0; i <= n; i++) g[i].clear();
scanf("%d%lld", &n, &k);
int u, v;
for (int i = 1; i <= n; i++)
{
scanf("%lld", &a[i]);
a[i + n] = k / a[i];
b[i] = a[i], b[i + n] = a[i + n];
}
sort(b + 1, b + 2 * n + 1);
int m = unique(b + 1, b + 2 * n + 1) - b;
for (int i = 1; i <= 2 * n; i++) a[i] = lower_bound(b + 1, b + m + 1, a[i]) - b;
for (int i = 0; i<n - 1; i++)
{
scanf("%d%d", &u, &v);
g[u].push_back(v);
vis[v]++;
}
int s;
for (int i = 1; i <= n; i++)
if (vis[i] == 0) { s = i; break; }
dfs(s);
printf("%lld\n", ans);
}
return 0;
}