ZOJ1041-Transmitters(叉乘)

本文介绍了一种通过固定半圆心和半径的半圆覆盖平面内多个点的问题,并提供了一个编程解决方案。该方案通过枚举每个点并计算以该点为直径端点的半圆所能覆盖的点数量来找出最大覆盖数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Transmitters

Time Limit: 2 Seconds      Memory Limit: 65536 KB

In a wireless network with multiple transmitters sending on the same frequencies, it is often a requirement that signals don't overlap, or at least that they don't conflict. One way of accomplishing this is to restrict a transmitter's coverage area. This problem uses a shielded transmitter that only broadcasts in a semicircle.

A transmitter T is located somewhere on a 1,000 square meter grid. It broadcasts in a semicircular area of radius r. The transmitter may be rotated any amount, but not moved. Given N points anywhere on the grid, compute the maximum number of points that can be simultaneously reached by the transmitter's signal. Figure 1 shows the same data points with two different transmitter rotations.

All input coordinates are integers (0-1000). The radius is a positive real number greater than 0. Points on the boundary of a semicircle are considered within that semicircle. There are 1-150 unique points to examine per transmitter. No points are at the same location as the transmitter.

Input consists of information for one or more independent transmitter problems. Each problem begins with one line containing the (x,y) coordinates of the transmitter followed by the broadcast radius, r. The next line contains the number of points N on the grid, followed by N sets of (x,y) coordinates, one set per line. The end of the input is signalled by a line with a negative radius; the (x,y) values will be present but indeterminate. Figures 1 and 2 represent the data in the first two example data sets below, though they are on different scales. Figures 1a and 2 show transmitter rotations that result in maximal coverage.

For each transmitter, the output contains a single line with the maximum number of points that can be contained in some semicircle. 

Example input:

25 25 3.5
7
25 28
23 27
27 27
24 23
26 23
24 29
26 29
350 200 2.0
5
350 202
350 199
350 198
348 200
352 200
995 995 10.0
4
1000 1000
999 998
990 992
1000 999
100 100 -2.5


Example output:

3
4
4


Source: Mid-Central USA 2001


题意:用一个固定圆心坐标和半径的半圆去覆盖点,问最多能覆盖的数量

解题思路:暴力枚举每个点,然后求以这个为直径的半圆能覆盖的点的数量


#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <string>
#include <set>
#include <queue>
#include <stack>
#include <map>

using namespace std;

#define LL long long
const int INF=0x3f3f3f3f;

double dis(double x1,double y1,double x2,double y2)
{
    return (x1-x2)*(x1-x2)+(y1-y2)*(y1-y2);
}

double xmult(double x1,double y1,double x2,double y2,double x,double y)
{
    return (x1-x)*(y2-y)-(x2-x)*(y1-y);
}
//点a(x1,y1)和点b(x2,y2)分别与原点o(x,y)构成向量(x1-x,y1-y)和(x2-x,y2-y)
//叉乘值为正表示向量 oa 在 ob 的顺时针pi范围内
//叉乘值为负时表示向量 oa 在 ob 的逆时针pi范围内

int main()
{
    int n,in[155];
    double xx,yy,r,x[155],y[155];
    while(~scanf("%lf%lf%lf",&xx,&yy,&r)&&(r>=0))
    {
        scanf("%d",&n);
        r=r*r;
        memset(in,0,sizeof in);
        for(int i=1;i<=n;i++)
        {
            scanf("%lf%lf",&x[i],&y[i]);
            if(dis(x[i],y[i],xx,yy)<=r) in[i]=1;
        }
        int ma=0;
        for(int i=1;i<=n;i++)
        {
            if(in[i])
            {
                int sum=0;
                for(int j=1;j<=n;j++)
                {
                    if(in[j]&&xmult(x[i],y[i],x[j],y[j],xx,yy)>=0) sum++;
                }
                ma=max(ma,sum);
            }
        }
        printf("%d\n",ma);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值