You are given two integers n and k. Find k-th smallest divisor of n, or report that it doesn't exist.
Divisor of n is any such natural number, that n can be divided by it without remainder.
The first line contains two integers n and k (1 ≤ n ≤ 1015, 1 ≤ k ≤ 109).
If n has less than k divisors, output -1.
Otherwise, output the k-th smallest divisor of n.
4 2
2
5 3
-1
12 5
6
In the first example, number 4 has three divisors: 1, 2 and 4. The second one is 2.
In the second example, number 5 has only two divisors: 1 and 5. The third divisor doesn't exist, so the answer is -1.
题意:求一个数第k大的因子,不存在第k大的因子则输出-1
解题思路:因为数据较大,用两个vector来存因子
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>
using namespace std;
#define LL long long
int main()
{
LL n,k;
while(~scanf("%lld %lld",&n,&k))
{
vector <LL> v1,v2;
for(LL i=1; i*i<=n; i++)
{
if(n%i==0)
{
v1.push_back(i);
if(i*i!=n) v2.push_back(n/i);
}
}
LL len=v1.size()+v2.size(),len1=v1.size(),len2=v2.size();
if(k>len) printf("-1\n");
else
{
if(k<=len1) printf("%lld\n",v1[k-1]);
else printf("%lld\n",v2[len2-(k-len1)]);
}
}
return 0;
}