经典DP水题D

本文介绍了一种算法挑战,即通过给定的一系列参数构建最高的堆叠游戏块。使用二维数组来记录每种可能的堆叠组合,并采用动态规划的方法来找出可以达到的最大高度。

Description

Michael The Kid receives an interesting game set from his grandparent as his birthday gift. Inside the game set box, there are n tiling blocks and each block has a form as follows: 

Each tiling block is associated with two parameters (l,m), meaning that the upper face of the block is packed with l protruding knobs on the left and m protruding knobs on the middle. Correspondingly, the bottom face of an (l,m)-block is carved with l caving dens on the left and m dens on the middle. 
It is easily seen that an (l,m)-block can be tiled upon another (l,m)-block. However,this is not the only way for us to tile up the blocks. Actually, an (l,m)-block can be tiled upon another (l',m')-block if and only if l >= l' and m >= m'. 
Now the puzzle that Michael wants to solve is to decide what is the tallest tiling blocks he can make out of the given n blocks within his game box. In other words, you are given a collection of n blocks B = {b1, b2, . . . , bn} and each block bi is associated with two parameters (li,mi). The objective of the problem is to decide the number of tallest tiling blocks made from B. 

Input

Several sets of tiling blocks. The inputs are just a list of integers.For each set of tiling blocks, the first integer n represents the number of blocks within the game box. Following n, there will be n lines specifying parameters of blocks in B; each line contains exactly two integers, representing left and middle parameters of the i-th block, namely, li and mi. In other words, a game box is just a collection of n blocks B = {b1, b2, . . . , bn} and each block bi is associated with two parameters (li,mi). 
Note that n can be as large as 10000 and li and mi are in the range from 1 to 100. 
An integer n = 0 (zero) signifies the end of input.

Output

For each set of tiling blocks B, output the number of the tallest tiling blocks can be made out of B. Output a single star '*' to signify the end of 
outputs.

Sample Input

3
3 2
1 1
2 3
5
4 2
2 4
3 3
1 1
5 5
0

Sample Output

2
3
*


题意:两串序列同时要最长上升子序列。

思路:一开始直接排序一个然后DP另一个。。。果断WA。。。

new一个a[][]和dp[][],a[i][j]++,画个表出来就懂了。

关键代码:dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + a[i][j];(参考网上。。为啥自己就想不出来嘞。。)


AC java 代码:


import java.util.Scanner;


public class sdupractice0724DPD {
//5324 KB 360 ms
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
while (n != 0) {
int[][] a = new int[105][105];
int[][] dp = new int[105][105];
for (int i = 1; i <= n; i++) {
int c = scan.nextInt();
int b = scan.nextInt();
a[c][b]++;
}
for (int i = 1; i <= 100; i++) {
for (int j = 1; j <= 100; j++) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + a[i][j];
}
}
System.out.println(dp[100][100]);
n = scan.nextInt();
}
System.out.println("*");
}
}






**高校专业实习管理平台设计与实现** 本设计项目旨在构建一个服务于高等院校专业实习环节的综合性管理平台。该系统采用当前主流的Web开发架构,基于Python编程语言,结合Django后端框架与Vue.js前端框架进行开发,实现了前后端逻辑的分离。数据存储层选用广泛应用的MySQL关系型数据库,确保了系统的稳定性和数据处理的效率。 平台设计了多角色协同工作的管理模型,具体包括系统管理员、院系负责人、指导教师、实习单位对接人以及参与实习的学生。各角色依据权限访问不同的功能模块,共同构成完整的实习管理流程。核心功能模块涵盖:基础信息管理(如院系、专业、人员信息)、实习过程管理(包括实习公告发布、实习内容规划、实习申请与安排)、双向反馈机制(单位评价与学生反馈)、实习支持与保障、以及贯穿始终的成绩评定与综合成绩管理。 在技术实现层面,后端服务依托Django框架的高效与安全性构建业务逻辑;前端界面则利用Vue.js的组件化特性与LayUI的样式库,致力于提供清晰、友好的用户交互体验。数据库设计充分考虑了实习管理业务的实体关系与数据一致性要求,并保留了未来功能扩展的灵活性。 整个系统遵循规范的软件开发流程,从需求分析、系统设计、编码实现到测试验证,均进行了多轮迭代与优化,力求在功能完备性、系统性能及用户使用体验方面达到较高标准。 **核心术语**:实习管理平台;Django框架;MySQL数据库;Vue.js前端;Python语言。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
### Bitmask 动态规划练习及其解法 Bitmask 动态规划是一种结合了位运算和动态规划的思想方法,适用于状态数量有限但复杂度较高的问。以下是几个经典的 bitmask DP及其实现思路。 --- #### **经典目 1**: LeetCode 698. Partition to K Equal Sum Subsets 给定一个整数数组 `nums` 和正整数 `k`,判断能否将这个数组分成 `k` 个子集,使得每个子集的和相同。 ##### 解法分析 该问可以通过 bitmask 来表示当前已经分配到哪些元素的状态。定义 `dp[mask]` 表示是否能够通过某些组合形成目标和的部分集合。初始条件为 `dp[0] = true`,即没有任何元素被选中的情况下是可以满足条件的[^2]。 代码实现如下: ```java public boolean canPartitionKSubsets(int[] nums, int k) { int totalSum = Arrays.stream(nums).sum(); if (totalSum % k != 0 || k > nums.length) return false; int target = totalSum / k; int n = nums.length; boolean[] dp = new boolean[1 << n]; dp[0] = true; int[] sums = new int[1 << n]; // 记录每种状态下已有的总和 for (int mask = 0; mask < (1 << n); ++mask) { if (!dp[mask]) continue; for (int i = 0; i < n; ++i) { if (((mask >> i) & 1) == 0 && sums[mask] + nums[i] <= target) { int nextMask = mask | (1 << i); if (!dp[nextMask]) { dp[nextMask] = true; sums[nextMask] = (sums[mask] + nums[i]) % target; if (nextMask == (1 << n) - 1) return true; } } } } return dp[(1 << n) - 1]; } ``` --- #### **经典目 2**: Codeforces Problem C. Maximum XOR Subset 找到一个大小不超过 `m` 的子集的最大异或值。 ##### 解法分析 利用 bitmask 枚举所有可能的子集,并计算其对应的异或值。由于最多只有 \(O(2^n)\) 种可能性,在合理范围内可以直接枚举并记录最大值[^3]。 代码实现如下: ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n, m; cin >> n >> m; vector<int> a(n); for(auto& x : a) cin>>x; int max_xor = 0; for(int mask=0; mask<(1<<n); ++mask){ if(__builtin_popcount(mask)>m) continue; // 跳过超过限制的情况 int current_xor = 0; for(int j=0; j<n; ++j){ if((mask&(1<<j))!=0){ current_xor ^=a[j]; } } max_xor = max(max_xor, current_xor); } cout << max_xor; } ``` --- #### **经典目 3**: AtCoder ABC D-Level Problems (e.g., Traveling Salesman Problem with Constraints) 旅行商问变体:在一个图中访问若干节点一次,返回最短路径长度。 ##### 解法分析 使用 bitmask 存储当前访问过的城市集合,转移方程为: \[ dp[mask][u] = \min(dp[mask'][v] + dist[v][u]) \] 其中 `mask'` 是去掉当前城市的前缀状态,`dist[v][u]` 表示从城市 `v` 到城市 `u` 的距离[^4]。 代码框架如下: ```python from functools import lru_cache def tsp(graph): N = len(graph) INF = float('inf') @lru_cache(None) def dfs(mask, u): # 当前状态和当前位置 if mask == (1 << N) - 1 and u == 0: # 所有城市都访问过了且回到了起点 return graph[u][0] or INF min_cost = INF for v in range(N): if not (mask & (1 << v)): # 如果未访问过此城市 cost = graph[u][v] or INF min_cost = min(min_cost, cost + dfs(mask | (1 << v), v)) return min_cost return dfs(1, 0) # Example usage: graph = [ [0, 10, 15, 20], [10, 0, 35, 25], [15, 35, 0, 30], [20, 25, 30, 0] ] print(tsp(graph)) ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值