经典DP水题D

本文介绍了一种算法挑战,即通过给定的一系列参数构建最高的堆叠游戏块。使用二维数组来记录每种可能的堆叠组合,并采用动态规划的方法来找出可以达到的最大高度。

Description

Michael The Kid receives an interesting game set from his grandparent as his birthday gift. Inside the game set box, there are n tiling blocks and each block has a form as follows: 

Each tiling block is associated with two parameters (l,m), meaning that the upper face of the block is packed with l protruding knobs on the left and m protruding knobs on the middle. Correspondingly, the bottom face of an (l,m)-block is carved with l caving dens on the left and m dens on the middle. 
It is easily seen that an (l,m)-block can be tiled upon another (l,m)-block. However,this is not the only way for us to tile up the blocks. Actually, an (l,m)-block can be tiled upon another (l',m')-block if and only if l >= l' and m >= m'. 
Now the puzzle that Michael wants to solve is to decide what is the tallest tiling blocks he can make out of the given n blocks within his game box. In other words, you are given a collection of n blocks B = {b1, b2, . . . , bn} and each block bi is associated with two parameters (li,mi). The objective of the problem is to decide the number of tallest tiling blocks made from B. 

Input

Several sets of tiling blocks. The inputs are just a list of integers.For each set of tiling blocks, the first integer n represents the number of blocks within the game box. Following n, there will be n lines specifying parameters of blocks in B; each line contains exactly two integers, representing left and middle parameters of the i-th block, namely, li and mi. In other words, a game box is just a collection of n blocks B = {b1, b2, . . . , bn} and each block bi is associated with two parameters (li,mi). 
Note that n can be as large as 10000 and li and mi are in the range from 1 to 100. 
An integer n = 0 (zero) signifies the end of input.

Output

For each set of tiling blocks B, output the number of the tallest tiling blocks can be made out of B. Output a single star '*' to signify the end of 
outputs.

Sample Input

3
3 2
1 1
2 3
5
4 2
2 4
3 3
1 1
5 5
0

Sample Output

2
3
*


题意:两串序列同时要最长上升子序列。

思路:一开始直接排序一个然后DP另一个。。。果断WA。。。

new一个a[][]和dp[][],a[i][j]++,画个表出来就懂了。

关键代码:dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + a[i][j];(参考网上。。为啥自己就想不出来嘞。。)


AC java 代码:


import java.util.Scanner;


public class sdupractice0724DPD {
//5324 KB 360 ms
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
while (n != 0) {
int[][] a = new int[105][105];
int[][] dp = new int[105][105];
for (int i = 1; i <= n; i++) {
int c = scan.nextInt();
int b = scan.nextInt();
a[c][b]++;
}
for (int i = 1; i <= 100; i++) {
for (int j = 1; j <= 100; j++) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + a[i][j];
}
}
System.out.println(dp[100][100]);
n = scan.nextInt();
}
System.out.println("*");
}
}






【博士论文复现】【阻抗建模、验证扫频法】光伏并网逆变器扫频与稳定性分析(包含锁相环电流环)(Simulink仿真实现)内容概要:本文档围绕“博士论文复现”主,重点介绍了光伏并网逆变器的阻抗建模与扫频法稳定性分析,涵盖锁相环和电流环的Simulink仿真实现。文档旨在通过完整的仿真资源和代码帮助科研人员复现相关技术细节,提升对新能源并网系统动态特性和稳定机制的理解。此外,文档还提供了大量其他科研方向的复现资源,包括微电网优化、机器学习、路径规划、信号处理、电力系统分析等,配套MATLAB/Simulink代码与模型,服务于多领域科研需求。; 适合人群:具备一定电力电子、自动控制或新能源背景的研究生、博士生及科研人员,熟悉MATLAB/Simulink环境,有志于复现高平论文成果并开展创新研究。; 使用场景及目标:①复现光伏并网逆变器的阻抗建模与扫频分析过程,掌握其稳定性判据与仿真方法;②借鉴提供的丰富案例资源,支撑博士论文或期刊论文的仿真实验部分;③结合团队提供的算法与模型,快速搭建实验平台,提升科研效率。; 阅读建议:建议按文档目录顺序浏览,优先下载并运行配套仿真文件,结合理论学习与代码调试加深理解;重点关注锁相环与电流环的建模细节,同时可拓展学习其他复现案例以拓宽研究视野。
### Bitmask 动态规划练习及其解法 Bitmask 动态规划是一种结合了位运算和动态规划的思想方法,适用于状态数量有限但复杂度较高的问。以下是几个经典的 bitmask DP及其实现思路。 --- #### **经典目 1**: LeetCode 698. Partition to K Equal Sum Subsets 给定一个整数数组 `nums` 和正整数 `k`,判断能否将这个数组分成 `k` 个子集,使得每个子集的和相同。 ##### 解法分析 该问可以通过 bitmask 来表示当前已经分配到哪些元素的状态。定义 `dp[mask]` 表示是否能够通过某些组合形成目标和的部分集合。初始条件为 `dp[0] = true`,即没有任何元素被选中的情况下是可以满足条件的[^2]。 代码实现如下: ```java public boolean canPartitionKSubsets(int[] nums, int k) { int totalSum = Arrays.stream(nums).sum(); if (totalSum % k != 0 || k > nums.length) return false; int target = totalSum / k; int n = nums.length; boolean[] dp = new boolean[1 << n]; dp[0] = true; int[] sums = new int[1 << n]; // 记录每种状态下已有的总和 for (int mask = 0; mask < (1 << n); ++mask) { if (!dp[mask]) continue; for (int i = 0; i < n; ++i) { if (((mask >> i) & 1) == 0 && sums[mask] + nums[i] <= target) { int nextMask = mask | (1 << i); if (!dp[nextMask]) { dp[nextMask] = true; sums[nextMask] = (sums[mask] + nums[i]) % target; if (nextMask == (1 << n) - 1) return true; } } } } return dp[(1 << n) - 1]; } ``` --- #### **经典目 2**: Codeforces Problem C. Maximum XOR Subset 找到一个大小不超过 `m` 的子集的最大异或值。 ##### 解法分析 利用 bitmask 枚举所有可能的子集,并计算其对应的异或值。由于最多只有 \(O(2^n)\) 种可能性,在合理范围内可以直接枚举并记录最大值[^3]。 代码实现如下: ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n, m; cin >> n >> m; vector<int> a(n); for(auto& x : a) cin>>x; int max_xor = 0; for(int mask=0; mask<(1<<n); ++mask){ if(__builtin_popcount(mask)>m) continue; // 跳过超过限制的情况 int current_xor = 0; for(int j=0; j<n; ++j){ if((mask&(1<<j))!=0){ current_xor ^=a[j]; } } max_xor = max(max_xor, current_xor); } cout << max_xor; } ``` --- #### **经典目 3**: AtCoder ABC D-Level Problems (e.g., Traveling Salesman Problem with Constraints) 旅行商问变体:在一个图中访问若干节点一次,返回最短路径长度。 ##### 解法分析 使用 bitmask 存储当前访问过的城市集合,转移方程为: \[ dp[mask][u] = \min(dp[mask'][v] + dist[v][u]) \] 其中 `mask'` 是去掉当前城市的前缀状态,`dist[v][u]` 表示从城市 `v` 到城市 `u` 的距离[^4]。 代码框架如下: ```python from functools import lru_cache def tsp(graph): N = len(graph) INF = float('inf') @lru_cache(None) def dfs(mask, u): # 当前状态和当前位置 if mask == (1 << N) - 1 and u == 0: # 所有城市都访问过了且回到了起点 return graph[u][0] or INF min_cost = INF for v in range(N): if not (mask & (1 << v)): # 如果未访问过此城市 cost = graph[u][v] or INF min_cost = min(min_cost, cost + dfs(mask | (1 << v), v)) return min_cost return dfs(1, 0) # Example usage: graph = [ [0, 10, 15, 20], [10, 0, 35, 25], [15, 35, 0, 30], [20, 25, 30, 0] ] print(tsp(graph)) ``` --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值