基于EMD和改进阈值的语音信号去噪及快速半盲混响时间估计方法
在语音处理领域,语音信号去噪和混响时间估计是两个重要的研究方向。下面将详细介绍基于经验模态分解(EMD)和改进阈值的语音信号去噪方法,以及一种快速半盲混响时间估计方法。
基于EMD和改进阈值的语音信号去噪
传统的语音信号去噪技术,如使用最优维纳滤波器进行语音估计,虽然易于实现和设计,但对于非线性、非平稳的语音信号效果不佳。近年来,小波阈值等非线性方法被提出,但小波方法存在分析函数预先确定、对于非平稳信号描述并非最优的问题。
EMD算法基础
经验模态分解(EMD)由Huang等人引入,用于自适应分析非平稳和非线性数据过程。其基本思想是将给定信号 $x(t)$ 迭代分解为一系列快速振荡分量(高频)叠加在慢速振荡分量(低频)上,这些分量称为本征模态函数(IMFs)。每个IMF需满足两个基本条件:
- (C1)在整个数据序列中,极值点的数量和过零点的数量必须相同或最多相差一个。
- (C2)在任意点,由局部最大值定义的上包络和由局部最小值定义的下包络的平均值等于零。
确定IMFs的过程称为筛选过程,具体步骤如下:
1. 初始化:$r_0(t) = x(t)$,$i = 1$。
2. 提取第 $i$ 个IMF:
- 初始化:$h_0(t) = r_{i - 1}(t)$,$j = 1$。
- 识别信号 $h_{j - 1}(t)$ 的极值点(最大值和最小值)。
- 通过三次样条插值局部最大值和局部最小值,形成 $h_{j - 1}(t)$ 的上包络和下包络。
- 通过平均包络计算局部均值 $m_{j - 1
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



