题目描述
输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,。
思路:
方法一:维护一个大小为k的大顶堆,复杂度:O(NlogK) + O(K),特别适合处理海量数据
public class Solution {
public ArrayList<Integer> GetLeastNumbers_Solution(int [] input, int k) {
if(k > input.length || input == null || k == 0){
return new ArrayList<Integer>();
}
PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer>(k ,(Integer o1 ,Integer o2) -> (o2 - o1));
for(int i : input){
if(maxHeap.size() < k){
maxHeap.add(i);
}else{
if(i < maxHeap.peek()){
maxHeap.poll();
maxHeap.add(i);
}
}
}
ArrayList<Integer> list = new ArrayList<>();
for(int i : maxHeap){
list.add(i);
}
return list;
}
}
方法二:快速选择(快排思想)
public class Solution {
public ArrayList<Integer> GetLeastNumbers_Solution(int [] input, int k) {
if(input == null || k == 0 || k > input.length){
return new ArrayList<Integer>();
}
ArrayList<Integer> list = new ArrayList<>();
helper(input , 0 , input.length - 1 , k);
for(int i = 0 ; i < k ; i++){
list.add(input[i]);
}
return list;
}
void helper(int[] nums , int left , int right , int k){
while(left < right){
int mid = partion(nums , left , right);
if(mid == k){
break;
}else if(mid < k){
left = mid + 1;
}else{
right = mid - 1;
}
}
}
int partion(int[] nums , int left , int right){ //快排的partiion过程
int pivot = nums[left];
int l = left;
int r = right;
while(l < r){
while(l < r && nums[r] > pivot){
r--;
}
while(l < r && nums[l] <= pivot){
l++;
}
if(l < r){
swap(nums , l , r);
}
}
swap(nums , left , r);
return r;
}
void swap(int[] nums , int i , int j){
int tem = nums[i];
nums[i] = nums[j];
nums[j] = tem;
}
}