HDU - 1114 Piggy-Bank (完全背包)

本文探讨了一个有趣的问题:如何利用已知的硬币类型和重量,确定存钱罐中能够保证的最小金额。通过完全背包问题的变形,我们解决了这一难题,确保了不会因资金不足而过早打破存钱罐。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                                   Piggy-Bank

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 42679    Accepted Submission(s): 21044

Problem Description

Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid. 
But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs! 

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams. 

Output

Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.". 

Sample Input

3

10 110

2

1 1

30 50

10 110

2

1 1 50 30 1 6 2 10 3 20 4

Sample Output

The minimum amount of money in the piggy-bank is 60.

The minimum amount of money in the piggy-bank is 100.

This is impossible.


题意:给出存钱罐内所有钱的质量 V ,给出 N 种货币的 价值 和 质量,问用这些货币拼凑出质量 V 的总价值的最小值。

思路:完全背包的变形。设dp[ i ] 为存钱罐内质量为 i 时价值的最小值。对于每种货币都进行一下完全背包。dp[ V ] 就是答案,若是dp[ V ]  == inf , 则表示无法用这些货币凑出质量为 V 的情况。

//#include <bits/stdc++.h>
#include <map>
//#include <tr1/unordered_map>
#include<limits>
#include <float.h>
#include <list>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
inline int lowbit(int x){ return x & (-x); }
inline int read(){int X = 0, w = 0; char ch = 0;while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
    while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();return w ? -X : X;}
inline int gcd(int a, int b){ return b ? gcd(b, a % b) : a; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Sca3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define Scl(x) scanf("%lld",&x)
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x)
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define db double
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double pi = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e6 + 10;
const int maxp = 1e3 + 10;
const LL INF = 0x3f3f3f3f;
const int inf = 0x3f3f3f3f;
const int mod = 20090717;

int E, F, V, n, v[510], c[510], dp[10010];

int main(){
    int t = read();
    while (t--){
        Sca2(E, F); V = F - E;
        Sca(n);
        For (i, 1, n) v[i] = read(), c[i] = read();
        For (i, 0, V) dp[i] = inf; //全部都初始化为inf
        dp[0] = 0; //初始化入口
        For (i, 1, n)
        For (j, c[i], V)
            dp[j] = min(dp[j], dp[j-c[i]] + v[i]);
        if (dp[V] == inf) printf("This is impossible.\n");
        else printf("The minimum amount of money in the piggy-bank is %d.\n", dp[V]);
    }

    return 0;
}

 

内容概要:本文探讨了在MATLAB/SimuLink环境中进行三相STATCOM(静态同步补偿器)无功补偿的技术方法及其仿真过程。首先介绍了STATCOM作为无功功率补偿装置的工作原理,即通过调节交流电压的幅值和相位来实现对无功功率的有效管理。接着详细描述了在MATLAB/SimuLink平台下构建三相STATCOM仿真模型的具体步骤,包括创建新模型、添加电源和负载、搭建主电路、加入控制模块以及完成整个电路的连接。然后阐述了如何通过对STATCOM输出电压和电流的精确调控达到无功补偿的目的,并展示了具体的仿真结果分析方法,如读取仿真数据、提取关键参数、绘制无功功率变化曲线等。最后指出,这种技术可以显著提升电力系统的稳定性与电能质量,展望了STATCOM在未来的发展潜力。 适合人群:电气工程专业学生、从事电力系统相关工作的技术人员、希望深入了解无功补偿技术的研究人员。 使用场景及目标:适用于想要掌握MATLAB/SimuLink软件操作技能的人群,特别是那些专注于电力电子领域的从业者;旨在帮助他们学会建立复杂的电力系统仿真模型,以便更好地理解STATCOM的工作机制,进而优化实际项目中的无功补偿方案。 其他说明:文中提供的实例代码可以帮助读者直观地了解如何从零开始构建一个完整的三相STATCOM仿真环境,并通过图形化的方式展示无功补偿的效果,便于进一步的学习与研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值