最后
金三银四马上就到了,希望大家能好好学习一下这些技术点
学习视频:
大厂面试真题:
static struct binder_thread *binder_get_thread(
struct binder_proc *proc){
struct binder_thread *thread = NULL;
struct rb_node *parent = NULL;
//从 proc 中获取红黑树根节点
struct rb_node **p = &proc->threads.rb_node;
//查找 pid 等于当前线程 id 的thread,该红黑树以 pid 大小为序存放
while (*p) {
parent = *p;
thread = rb_entry(parent, struct binder_thread, rb_node);
//current->pid 是当前调用线程的 id
if (current->pid < thread->pid)
p = &(*p)->rb_left;
else if (current->pid > thread->pid)
p = &(*p)->rb_right;
else
break;
}
if (*p == NULL) {//如果没有找到,则新创建一个
thread = kzalloc(sizeof(*thread), GFP_KERNEL);
if (thread == NULL)
return NULL;
binder_stats_created(BINDER_STAT_THREAD);
thread->proc = proc;
thread->pid = current->pid;
init_waitqueue_head(&thread->wait); //初始化等待队列
INIT_LIST_HEAD(&thread->todo); //初始化待处理队列
//加入到 proc 的 threads 红黑树中
rb_link_node(&thread->rb_node, parent, p);
rb_insert_color(&thread->rb_node, &proc->threads);
thread->looper |= BINDER_LOOPER_STATE_NEED_RETURN;
thread->return_error = BR_OK;
thread->return_error2 = BR_OK;
}
return thread;
}
binder_thread 是用来描述线程的结构体,binder_get_thread() 方法中逻辑也很简单,首先从调用进程 proc 中查找当前线程是否已被记录,如果找到就直接返回,否则新建一个返回,并记录到 proc 中。
也就是说所有调用 binder_ioctl() 的线程,都会被记录起来。
3.binder_ioctl_write_read
此方法分为两部分来看,首先是整体逻辑:
static int binder_ioctl_write_read(struct file *filp,
unsigned int cmd, unsigned long arg,
struct binder_thread *thread){
int ret = 0;
struct binder_proc *proc = filp->private_data;
unsigned int size = _IOC_SIZE(cmd);
//用户传下来的数据赋值给 ubuf
void __user *ubuf = (void __user *)arg;
struct binder_write_read bwr;
//把用户空间数据 ubuf 拷贝到 bwr
if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
ret = -EFAULT;
goto out;
}
暂时忽略处理数据逻辑…
//将读写后的数据写回给用户空间
if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {
ret = -EFAULT;
goto out;
}
out:
return ret;
}
起初看到 copy_from_user() 方法时难以理解,因为它看起来是将我们要传输的数据拷贝到内核空间了,但目前还没有看到 server 端的任何线索,bwr 跟 server 端没有映射关系,那后续再将 bwr 传输给 server 端的时候又要拷贝,这样岂不是多次拷贝了?
其实这里的 copy_from_user() 方法并没有拷贝要传输的数据,而仅是拷贝了持有传输数据内存地址的 bwr。后续处理数据时会根据 bwr 信息真正的去拷贝要传输的数据。
处理完数据后,会将处理结果体现在 bwr 中,然后返回给用户空间处理。那是如何处理数据的呢?所谓的处理数据,就是对数据的读写而已:
if (bwr.write_size > 0) {//写数据
ret = binder_thread_write(proc,
thread,
bwr.write_buffer, bwr.write_size,
&bwr.write_consumed);
trace_binder_write_done(ret);
if (ret < 0) { //写失败
bwr.read_consumed = 0;
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto out;
}
}
if (bwr.read_size > 0) {//读数据
ret = binder_thread_read(proc, thread, bwr.read_buffer,
bwr.read_size,
&bwr.read_consumed,
filp->f_flags & O_NONBLOCK);
trace_binder_read_done(ret);
if (!list_empty(&proc->todo))
//唤醒等待状态的线程
wake_up_interruptible(&proc->wait);
if (ret < 0) { //读失败
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto out;
}
}
可见 binder 驱动内部依赖用户空间的 binder_write_read 决定是要读取还是写入数据:其内部变量 read_size>0 则代表要读取数据,write_size>0 代表要写入数据,若都大于 0 则先写入,后读取。
至此焦点应该集中在 binder_thread_write() 和 binder_thread_read(),下面分析这两个方法。
4.binder_thread_write
在上面的 binder_ioctl_write_read() 方法中调用 binder_thread_write() 时传入了 bwr.write_buffer、bwr.write_size 等,先搞清楚这些参数是什么。
最开始是在用户空间 IPCThreadState 的 transact() 中通过 writeTransactionData() 方法创建数据并写入 mOut 的,writeTransactionData 方法代码如下:
status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,
int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer){
binder_transaction_data tr; //到驱动内部后会取出此结构体进行处理
tr.target.ptr = 0;
tr.target.handle = handle; //目标 server 的 binder 的句柄
//请求码,getService() 服务对应的是 GET_SERVICE_TRANSACTION
tr.code = code;
tr.flags = binderFlags;
tr.cookie = 0;
tr.sender_pid = 0;
tr.sender_euid = 0;
const status_t err = data.errorCheck(); //验证数据合理性
if (err == NO_ERROR) {
tr.data_size = data.ipcDataSize(); //传输数据大小
tr.data.ptr.buffer = data.ipcData(); //传输数据
tr.offsets_size = data.ipcObjectsCount()*sizeof(binder_size_t);
tr.data.ptr.offsets = data.ipcObjects();
} else {…}
mOut.writeInt32(cmd); // transact 传入的 cmd 是 BC_TRANSACTION
mOut.write(&tr, sizeof(tr)); //打包成 binder_transaction_data
return NO_ERROR;
}
然后在 IPCThreadState 的 talkWithDriver() 方法中对 write_buffer 赋值:
bwr.write_buffer = (uintptr_t)mOut.data();
搞清楚了数据的来源,再来看 binder_thread_write() 方法,binder_thread_write() 方法中处理了大量的 BC_XXX 命令,代码很长,这里我们只关注当前正在处理的 BC_TRANSACTION 命令,简化后代码如下:
static int binder_thread_write(struct binder_proc *proc,
struct binder_thread *thread,
binder_uintptr_t binder_buffer, size_t size,
binder_size_t *consumed){
uint32_t cmd;
void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
void __user *ptr = buffer + *consumed; //数据起始地址
void __user *end = buffer + size; //数据结束地址
//可能有多个命令及对应数据要处理,所以要循环
while (ptr < end && thread->return_error == BR_OK) {
if (get_user(cmd, (uint32_t __user *)ptr)) // 读取一个 cmd
return -EFAULT;
//跳过 cmd 所占的空间,指向要处理的数据
ptr += sizeof(uint32_t);
switch (cmd) {
case BC_TRANSACTION:
case BC_REPLY: {
//与 writeTransactionData 中准备的数据结构体对应
struct binder_transaction_data tr;
//拷贝到内核空间 tr 中
if (copy_from_user(&tr, ptr, sizeof(tr)))
return -EFAULT;
//跳过数据所占空间,指向下一个 cmd
ptr += sizeof(tr);
//处理数据
binder_transaction(proc, thread, &tr, cmd == BC_REPLY);
break;
}
处理其他 BC_XX 命令…
}
//被写入处理消耗的数据量,对应于用户空间的 bwr.write_consumed
*consumed = ptr - buffer;
binder_thread_write() 中从 bwr.write_buffer 中取出了 cmd 和 cmd 对应的数据,进一步交给 binder_transaction() 处理,需要注意的是,BC_TRANSACTION、BC_REPLY 这两个命令都是由 binder_transaction() 处理的。
简单梳理一下,由 binder_ioctl -> binder_ioctl_write_read -> binder_thread_write ,到目前为止还只是在准备数据,没有看到跟目标进程相关的任何处理,都属于 “准备数据,根据命令分发给具体的方法去处理” 第 1 个工作。
而到此为止,第 1 个工作便结束,下一步的 binder_transaction() 方法终于要开始后面的工作了。
5.binder_transaction
binder_transaction() 方法中代码较长,先总结它干了哪些事:对应开头列出的工作,此方法中做了非常关键的 2-4 步:
- 找到目标进程的相关信息
- 将数据一次拷贝到目标进程所映射的物理内存块
- 记录待处理的任务,唤醒目标线程
以这些工作为线索,将代码分为对应的部分来看,首先是**「找到目标进程的相关信息」**,简化后代码如下:
static void binder_transaction(struct binder_proc *proc,
struct binder_thread *thread,
struct binder_transaction_data *tr, int reply){
struct binder_transaction *t; //用于描述本次 server 端要进行的 transaction
struct binder_work *tcomplete; //用于描述当前调用线程未完成的 transaction
binder_size_t *offp, *off_end;
struct binder_proc *target_proc; //目标进程
struct binder_thread *target_thread = NULL; //目标线程
struct binder_node *target_node = NULL; //目标 binder 节点
struct list_head *target_list; //目标 TODO 队列
wait_queue_head_t *target_wait; //目标等待队列
if(reply){
in_reply_to = thread->transaction_stack;
…处理 BC_REPLY,暂不关注
}else{
//处理 BC_TRANSACTION
if (tr->target.handle) { //handle 不为 0
struct binder_ref *ref;
//根据 handle 找到目标 binder 实体节点的引用
ref = binder_get_ref(proc, tr->target.handle);
target_node = ref->node; //拿到目标 binder 节点
} else {
// handle 为 0 则代表目标 binder 是 service manager
// 对于本次调用来说目标就是 service manager
target_node = binder_context_mgr_node;
}
}
target_proc = target_node->proc; //拿到目标进程
if (!(tr->flags & TF_ONE_WAY) && thread->transaction_stack) {
struct binder_transaction *tmp;
tmp = thread->transaction_stack;
while (tmp) {
if (tmp->from && tmp->from->proc == target_proc)
target_thread = tmp->from; //拿到目标线程
tmp = tmp->from_parent;
}
}
target_list = &target_thread->todo; //拿到目标 TODO 队列
target_wait = &target_thread->wait; //拿到目标等待队列
binder_transaction、binder_work 等结构体在上一篇中有介绍,上面代码中也详细注释了它们的含义。比较关键的是 binder_get_ref() 方法,它是如何找到目标 binder 的呢?这里暂不延伸,下文再做分析。
继续看 binder_transaction() 方法的第 2 个工作,「将数据一次拷贝到目标进程所映射的物理内存块」:
t = kzalloc(sizeof(*t), GFP_KERNEL); //创建用于描述本次 server 端要进行的 transaction
tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL); //创建用于描述当前调用线程未完成的 transaction
if (!reply && !(tr->flags & TF_ONE_WAY)) //将信息记录到 t 中:
t->from = thread; //记录调用线程
else
t->from = NULL;
t->sender_euid = task_euid(proc->tsk);
t->to_proc = target_proc; //记录目标进程
t->to_thread = target_thread; //记录目标线程
t->code = tr->code; //记录请求码,getService() 对应的是 GET_SERVICE_TRANSACTION
t->flags = tr->flags;
//实际申请目标进程所映射的物理内存,准备接收要传输的数据
t->buffer = binder_alloc_buf(target_proc, tr->data_size,
tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));
//申请到 t->buffer 后,从用户空间将数据拷贝进来,这里就是一次拷贝数据的地方!!
if (copy_from_user(t->buffer->data, (const void __user *)(uintptr_t)
tr->data.ptr.buffer, tr->data_size)) {
return_error = BR_FAILED_REPLY;
goto err_copy_data_failed;
}
为什么在拷贝之前要先申请物理内存呢?之前介绍 binder_mmap() 方法时详细分析过,虽然 binder_mmap() 直接映射了 (1M-8K) 的虚拟内存,但却只申请了 1 页的物理页面,等到实际使用时再动态申请。也就是说,在 binder_ioctl() 实际传输数据的时候,再通过 binder_alloc_buf() 方法去申请物理内存。
至此已经将要传输的数据拷贝到目标进程,目标进程可以直接读取到了,接下来要做的就是将目标进程要处理的任务记录起来,然后唤醒目标进程,这样在目标进程被唤醒后,才能知道要处理什么任务。
最后来看 binder_transaction() 方法的第 3 个工作,「记录待处理的任务,唤醒目标线程」:
if (reply) { //如果是处理 BC_REPLY,pop 出来栈顶记录的 transaction(实际上是删除链表头元素)
binder_pop_transaction(target_thread, in_reply_to);
} else if (!(t->flags & TF_ONE_WAY)) {
//如果不是 oneway,将 server 端要处理的 transaction 记录到当前调用线程
t->need_reply = 1;
t->from_parent = thread->transaction_stack;
thread->transaction_stack = t;
} else {
…暂不关注 oneway 的情况
}
t->work.type = BINDER_WORK_TRANSACTION;
list_add_tail(&t->work.entry, target_list); //加入目标的处理队列中
tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; //设置调用线程待处理的任务类型
list_add_tail(&tcomplete->entry, &thread->todo); //记录调用线程待处理的任务
if (target_wait)
wake_up_interruptible(target_wait); //唤醒目标线程
再次梳理一下,至此已经完成了前四个工作:
- 准备数据,根据命令分发给具体的方法去处理
- 找到目标进程的相关信息
- 将数据一次拷贝到目标进程所映射的物理内存块
- 记录待处理的任务,唤醒目标线程
其中第 1 个工作涉及到的方法为:
binder_ioctl() -> binder_get_thread() -> binder_ioctl_write_read() -> binder_thread_write()
主要是一些数据的准备和方法转跳,没做什么实质的事情。而 binder_transaction() 方法中做了非常重要的 2-4 工作。
剩下的工作还有:
- 调用线程进入休眠
- 目标进程直接拿到数据进行处理,处理完后唤醒调用线程
- 调用线程返回处理结果
可以想到,5 和 6 其实没有时序上的限制,而是并行处理的。下面先来看第 5 个工作:调用线程是如何进入休眠等待服务端执行结果的。
6.binder_thread_read
在唤醒目标线程后,调用线程就执行完 binder_thread_write() 写完了数据,返回到 binder_ioctl_write_read() 方法中,接着执行 binder_thread_read() 方法。
而调用线程的休眠就是在此方法中触发的,下面将 binder_thread_read() 分为两部分来看,首先是是否阻塞当前线程的判断逻辑:
static int binder_thread_read(struct binder_proc *proc,
struct binder_thread *thread,
binder_uintptr_t binder_buffer, size_t size,
binder_size_t *consumed, int non_block){
void __user *buffer = (void __user *)(uintptr_t)binder_buffer; //bwr.read_buffer
void __user *ptr = buffer + *consumed; //数据起始地址
void __user *end = buffer + size; //数据结束地址
if (*consumed == 0) {
if (put_user(BR_NOOP, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
}
//是否要准备睡眠当前线程
wait_for_proc_work = thread->transaction_stack == NULL &&
list_empty(&thread->todo);
if (wait_for_proc_work) {
if (non_block) { //non_block 为 false
if (!binder_has_proc_work(proc, thread))
ret = -EAGAIN;
} else
ret = wait_event_freezable_exclusive(proc->wait,
binder_has_proc_work(proc, thread));
} else {
if (non_block) { //non_block 为 false
《MySql面试专题》
《MySql性能优化的21个最佳实践》
《MySQL高级知识笔记》
文中展示的资料包括:**《MySql思维导图》《MySql核心笔记》《MySql调优笔记》《MySql面试专题》《MySql性能优化的21个最佳实践》《MySq高级知识笔记》**如下图
关注我,点赞本文给更多有需要的人
.(img-lwcn8EGa-1715542745152)]
文中展示的资料包括:**《MySql思维导图》《MySql核心笔记》《MySql调优笔记》《MySql面试专题》《MySql性能优化的21个最佳实践》《MySq高级知识笔记》**如下图
[外链图片转存中…(img-d3cNeMYl-1715542745152)]
关注我,点赞本文给更多有需要的人