我什么时候会死?大数据人工智能将预测您的死亡时间,准确率超高

诺丁汉大学研究团队利用人工智能预测慢性病患者死亡风险,准确度比现有机器学习系统高10%,考虑了包括病史、用药、生活习惯等多种因素。该算法在50万名患者数据上训练,未来有望在个性化医疗中发挥作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

北京时间2019年3月29日消息,根据国外媒体报道研究显示,人工智能将可以预测慢性病患者的死亡时间。
国外科学家和医生们利用五十万名患者的数据研发了一款人工智能产品,能够预测哪些患者死亡的风险较高。患者的病史病例、用药情况、身体状况、使用防晒霜情况等各方面因素都被测试在内。
在这里插入图片描述
通过研究人员称,该人工智能系统在测试中的测试结果“非常精确”,准确度比现有的机器学习系统的估测高百分之十。
此项研究由英国的诺丁汉大学开展,流行病学与数据科学助理教授Stephen Weng博士负责领导本次研究。“在对抗严重疾病的抗争中,预防性医疗的优先级正变得越来越高。”Dr Weng表示。
“我们已经历时多年时间,努力改进用计算机评估一般人群健康风险的计算机技术的准确性。大多数研究应用都专注于单一疾病领域,但预测由多种疾病引发的死亡概率极为复杂,特别是在考虑各种可能造成影响的环境与个体因素的情况下。我们开发了一种独特且全面的方法,通过机器学习技术预测某个人早亡的概率,这是在该领域取得的一大进步。”
在这里插入图片描述
该人工智能算法由502648名40至69岁之间的患者数据生成,他们曾在2006年至2010年之间参与过英国生物银行研究,并一直被追踪研究至2016年。算法共考虑了60种健康预测因素,包括受试者的体质指数(BIM)、血压、维生素或营养补充剂服用情况等。受试者的水果、蔬菜、肉类、奶酪、谷物、鱼类和酒精摄入情况也被考虑在内。
“我们将预测结果与英国国家统计署的死亡记录、英国癌症注册记录等数据库的死亡数据进行了比对。”随后,他们又将该算法与两项标准的机器学习技术进行了比较。结果显示,这套新模型的准确率比现存技术高了10.1%,“我们发现机器学习算法预测死亡的准确率比由人类专家开发的标准预测模型高得多。” Weng博士指出。
该研究作者、诺丁汉大学医学与健康科学学院基层医疗主任Joe Kai教授补充道:“人们对利用人工智能或机器学习技术预测健康结果有强烈的兴趣。在有些情况下,这种技术也许很有帮助,有时则不然。就眼下这种情况来说,我们证明了通过仔细调整,这些算法可以有效改进预测效果,这些技术对健康领域的很多研究者来说可能还很新鲜、难以理解。我们相信,只要以透明清晰的方法报告这些方法,将有助于这一医疗领域获得科学验证、实现进一步发展。”
在这里插入图片描述
诺丁汉大学此前开展的一项研究提出,有四种人工智能算法预测心脏病的准确度远高于目前心脏病治疗指导方针中使用的技术。
科学家们预言,人工智能将在定制化医疗的发展中扮演关键角色。但他们也补充道,为证实机器学习在其他种群中的有效性、以及将人工智能更好地融合到日常医疗之中,还需要开展进一步研究。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值