问题描述
给定一个加权连通图(无向的或有向的),要求找出从每个定点到其他所有定点之间的最短路径以及最短路径的长度。
2.1 动态规划法原理简介
动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。
与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)
package com.liuzhen.floyd;
public class Floyd {
//根据有向图的权重矩阵及起始的中间节点路径矩阵,返回最终图的距离矩阵及中间节点路径矩阵
public static void getShortestPath(int[][] chart,int[][] path){
int len = chart.length;
for(int k = 0;k < len;k++){ //k = 0表示,增加中间顶点a,k自增,表示后继增加第k个中间顶点(依次为b,c,d...)
for(int i = 0;i < len;i++){
for(int j = 0;j < len;j++){
int temp = 0; //新增一个中