论文笔记之:Conditional Generative Adversarial Nets

本文介绍了一种基于GANs的拓展模型——条件生成式对抗网络(CGANs),它通过引入额外条件y来提升生成图像的质量和可控性。在MNIST数据集上的实验表明,CGANs能更精确地控制生成图像的类别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

Conditional Generative Adversarial Nets

arXiv 2014 

 

    本文是 GANs 的拓展,在产生 和 判别时,考虑到额外的条件 y,以进行更加“激烈”的对抗,从而达到更好的结果。 

  众所周知,GANs 是一个 minmax 的过程:

  而本文通过引入 条件 y,从而将优化的目标函数变成了:

 

  下图给出了条件产生式对抗网络的结构示意图:

 

 

  是的,整个过程就是看起来的这么简单,粗暴,有效。

 

  实验部分,作者在 Mnist 数据集上进行了实验:

  

 

  然后是,给图像贴标签:

 


 

  总结

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

转载于:https://www.cnblogs.com/wangxiaocvpr/p/6014543.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值