Hamming Distance(贪心)

本文介绍了一道关于寻找两个字符串间具有相同Hamming距离且字典序最小的第三个字符串的问题。通过分析字符串差异并利用后缀和技巧,确保构造的字符串满足题目要求。

Hamming Distance

[Link](Problem - H - Codeforces)

题意

两个长度相同字符串的 h a m m i n g D i s t a n c e hammingDistance hammingDistance为字符不同的总位数。给你两个字符串 s t r a , s t r b stra,strb stra,strb,让你找到一个字符串 r e s res res,使得 r e s res res s t r a , s t r b stra,strb stra,strb h a m m i n g D i s t a n c e hammingDistance hammingDistance相同且字典序最小。

题解

因为要满足字典序最小所以从前往后肯定 a a a填的越多越好,设sum为枚举到当前位 d i s t a − d i s t b dista-distb distadistb的值,因为最终距离要相同所以最后 s u m sum sum一定等于零。对于每一位来说如果 s t r a i ! = s t r b i stra_i != strb_i strai!=strbi那么这一位既可以让sum加一(填 s t r b i strb_i strbi)也可以让sum减一(填 s t r a i stra_i strai)也可以不变(填一个不等于 s t r a i , s t r b i stra_i,strb_i strai,strbi的字符)。所以对于每一位判断要填某个字符是否合法就要看填完以后的 s u m su m sum和这一位以后的不同位的个数,因此我们可以用后缀和来记录不同位数的和,每次从小到大枚举26个字符,如果当前这个check成立就填就ok了。

Code

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <set>
#include <queue>
#include <vector>
#include <map>
#include <bitset>
#include <unordered_map>
#include <cmath> 
#include <stack>
#include <iomanip>
#include <deque> 
#include <sstream>
#define x first
#define y second
#define debug(x) cout<<#x<<":"<<x<<endl;
using namespace std;
typedef long double ld;
typedef long long LL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef unsigned long long ULL;
const int N = 1e5 + 10, M = 2 * N, INF = 0x3f3f3f3f, mod = 1e9 + 7;
const double eps = 1e-8, pi = acos(-1), inf = 1e20;
#define tpyeinput int
inline char nc() {static char buf[1000000],*p1=buf,*p2=buf;return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;}
inline void read(tpyeinput &sum) {char ch=nc();sum=0;while(!(ch>='0'&&ch<='9')) ch=nc();while(ch>='0'&&ch<='9') sum=(sum<<3)+(sum<<1)+(ch-48),ch=nc();}
int dx[] = {-1, 0, 1, 0}, dy[] = {0, 1, 0, -1};
int h[N], e[M], ne[M], w[M], idx;
void add(int a, int b, int v = 0) {
    e[idx] = b, w[idx] = v, ne[idx] = h[a], h[a] = idx ++;
}
int n, m, k;
char stra[N], strb[N];
int sum, dist[N];
bool check(int x, char c) {
    int tmp = sum;
    if (stra[x] != c) tmp ++;
    if (strb[x] != c) tmp --;
    return abs(tmp) <= dist[x + 1];
}
int main() {
    ios::sync_with_stdio(false), cin.tie(0);
    int T, C = 1;
    cin >> T;
    while (T -- ) {
        cin >> stra + 1 >> strb + 1;
        n = strlen(stra + 1);
        dist[n + 1] = 0;
        for (int i = n; i; i -- ) dist[i] = dist[i + 1] + (stra[i] != strb[i]);
        cout << "Case "<< C ++ << ":"<< " ";
        sum = 0;
        for (int i = 1; i <= n; i ++ )
            for (char c = 'a'; c <= 'z'; c ++ ) {
                if (!check(i, c)) continue ;
                cout << c;
                if (c != stra[i]) sum ++;
                if (c != strb[i]) sum --;
                break;
            }
        cout << endl;
    }
    return 0;
}
import numpy as np from PIL import Image from scipy.spatial.distance import cdist def load_images(image_paths): """加载图像并将其转换为灰度二值化矩阵""" images = [] for path in image_paths: img = Image.open(path).convert('L') # 转换为灰度图像 img_array = np.array(img) > 128 # 二值化处理 images.append(img_array) return images def extract_edges(image): """提取图像的左右边缘""" left_edge = image[:, 0] right_edge = image[:, -1] return left_edge, right_edge def calculate_similarity(edge1, edge2): """计算两条边缘之间的相似度""" distance = cdist([edge1], [edge2], metric='hamming')[0][0] return 1 - distance # 相似度为距离的反比 def find_first_fragment(edges): """根据左边缘特征确定第一张碎片""" left_sides = [edge[0] for edge in edges] first_index = np.argmin(np.sum(left_sides, axis=1)) # 左边缘最平滑的为第一张 return first_index def greedy_assemble(edges): """基于贪心策略进行碎片拼接""" fragments_order = [] remaining_indices = list(range(len(edges))) # 找到第一张碎片 first_index = find_first_fragment(edges) fragments_order.append(first_index) remaining_indices.remove(first_index) while remaining_indices: current_right_edge = edges[fragments_order[-1]][1] similarities = [calculate_similarity(current_right_edge, edges[i][0]) for i in remaining_indices] next_index = remaining_indices[np.argmax(similarities)] fragments_order.append(next_index) remaining_indices.remove(next_index) return fragments_order # 示例使用 image_paths = ['fragment1.png', 'fragment2.png', 'fragment3.png'] # 替换为实际文件路径 images = load_images(image_paths) edges = [extract_edges(img) for img in images] order = greedy_assemble(edges) print("拼接顺序:", order)
06-24
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值