Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth smallest element in the matrix.
Note that it is the kth smallest element in the sorted order, not the kth distinct element.
Example:
matrix = [ [ 1, 5, 9], [10, 11, 13], [12, 13, 15] ], k = 8, return 13.
Note:
You may assume k is always valid, 1 ≤ k ≤ n2.
把优先队列这个给忘了。。。对于这种求取前n个这种的题目应该用起来的
转他人做法
public class Solution {
public int kthSmallest(int[][] matrix, int k) {
int n = matrix.length;
PriorityQueue<Tuple> pq = new PriorityQueue<Tuple>();
for(int j = 0; j <= n-1; j++) pq.offer(new Tuple(0, j, matrix[0][j]));
for(int i = 0; i < k-1; i++) {
Tuple t = pq.poll();
if(t.x == n-1) continue;
pq.offer(new Tuple(t.x+1, t.y, matrix[t.x+1][t.y]));
}
return pq.poll().val;
}
}
class Tuple implements Comparable<Tuple> {
int x, y, val;
public Tuple (int x, int y, int val) {
this.x = x;
this.y = y;
this.val = val;
}
@Override
public int compareTo (Tuple that) {
return this.val - that.val;
}
}
还有可以用二分法来做,不过与一维数组不一样,这里用于划分的不是索引值,而是范围
The key point for any binary search is to figure out the "Search Space". For me, I think there are two kind of "Search Space" -- index and range(the
range from the smallest number to the biggest number). Most usually, when the array is sorted in one direction, we can use index as "search space", when the array is unsorted and we are going to find a specific number, we can use "range".
public class Solution {
public int kthSmallest(int[][] matrix, int k) {
int lo = matrix[0][0], hi = matrix[matrix.length - 1][matrix[0].length - 1] + 1;//[lo, hi]
while(lo < hi) {
int mid = lo + (hi - lo) / 2;
int count = 0, j = matrix[0].length - 1;
for(int i = 0; i < matrix.length; i++) {
while(j >= 0 && matrix[i][j] > mid) j--;
count += (j + 1);
}
if(count < k) lo = mid + 1;
else hi = mid;
}
return lo;
}
}