Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree [1,2,2,3,4,4,3]
is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following [1,2,2,null,3,null,3]
is not:
1 / \ 2 2 \ \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isSymmetric(TreeNode root) {
if(root==null) return true;
return isMirror(root.left, root.right);
}
private boolean isMirror(TreeNode left, TreeNode right){
if(left==null && right==null) return true;
if(left==null || right==null) return false;
if(left.val!=right.val) return false;
return isMirror(left.left, right.right) && isMirror(left.right, right.left);
}
}
附上迭代做法
public boolean isSymmetric(TreeNode root) {
Queue<TreeNode> q = new LinkedList<TreeNode>();
if(root == null) return true;
q.add(root.left);
q.add(root.right);
while(q.size() > 1){
TreeNode left = q.poll(),
right = q.poll();
if(left== null&& right == null) continue;
if(left == null ^ right == null) return false;
if(left.val != right.val) return false;
q.add(left.left);
q.add(right.right);
q.add(left.right);
q.add(right.left);
}
return true;
}