main function has more than 200 local variables

lua里一个文件不能有超过200本地变量,解决方案是把部分变量合并到一个table里
以下是经典的MOSPO算法MATLAB代码: ```matlab function [xk, fval, exitflag, output] = mospo(fun, x0, options) % MOSPO: Multi-Objective Shuffled Complex Evolution Algorithm. % % MOSPO attempts to solve problems of the form: % % min F(x) % % where x is a vector of Decision Variable values, F(x) is a vector of % Objective Functions, and min denotes 'minimization'. % % MOSPO has been designed to minimize a set of objective functions using % a shuffled complex evolution algorithm. MOSPO is capable of handling % both linear and nonlinear constraints. % % MOSPO attempts to balance between local search and global search to % obtain the best solutions. % % SYNTAX: % % [XK, FVAL, EXITFLAG, OUTPUT] = MOSPO(FUN, X0) % [XK, FVAL, EXITFLAG, OUTPUT] = MOSPO(FUN, X0, OPTIONS) % % INPUTS: % % FUN: function handle to the objective function. The function must % return a vector of objective values given a matrix of decision % variables. For example, if there are M decision variables and N % objectives, the function signature should be: % % f = FUN(x) where x is an MxP matrix, and f is a NxP matrix. % % Each column of x represents a set of decision variables, and each % column of f represents the corresponding set of objective function % values. % % X0: initial matrix of decision variable values. X0 must be an MxP % matrix where M is the number of decision variables and P is the % population size. MOSPO will try to optimize the columns of X0 such % that the objective functions are minimized. % % OPTIONS: structure that contains options for the algorithm. This % argument is optional. The fields of the structure are: % % Display: Level of display output. 'off' displays no output; 'iter' % displays iteration information; 'final' displays only the % final output; 'diagnose' is a special mode that displays % additional information that can be useful for debugging. % Default is 'off'. % % MaxGenerations: Maximum number of generations. Default is 500. % % PopulationSize: Number of individuals in the population. Default is % 20*M where M is the number of decision variables. % % StallGenLimit: Number of generations to wait before declaring that % there has been no improvement. Default is 20. % % TolFun: Termination tolerance for the objective function. Default % is 1e-4. % % TolCon: Termination tolerance for the constraints. Default is 1e-6. % % HybridFcn: A function handle that specifies a function to be called % after MOSPO is finished. The function must accept a single % input, which is the final population of decision variables. % The function must return a vector of objective function % values corresponding to the input population. Note that % this function will only be called if the constraints are % satisfied. Default is []. % % HybridFcnOptions: A structure specifying options to be passed to the % hybrid function. Default is []. % % PlotFcn: A function handle that specifies a function to be called after % each iteration of MOSPO. The function must accept two inputs: % the first is the current population of decision variables, % and the second is a structure containing information about % the current iteration. The function should not return any % values. Default is []. % % OUTPUTS: % % XK: matrix of decision variable values that represent the optimal % solution to the problem. If there is only one objective function, % then XK is an Mx1 vector. If there are N objective functions, then % XK is an MxN matrix. % % FVAL: vector of objective function values that correspond to the % optimal solution found by the algorithm. If there is only one % objective function, then FVAL is a scalar. If there are N % objective functions, then FVAL is a 1xN vector. % % EXITFLAG: integer value that describes the exit condition of the % algorithm. Possible values are: % % 1: Maximum number of generations reached. % 2: Minimum change in fitness function value reached. % 3: Stall generation limit reached. % 4: Termination tolerance on objective function value reached. % 5: Termination tolerance on constraint violation reached. % 6: Maximum constraint violation reached. % % OUTPUT: structure that contains additional information about the % optimization process. The fields of the structure are: % % generation: Number of generations performed. % % funccount: Number of times the objective function was evaluated. % % maxconstraint: Maximum constraint violation found during optimization. % % avgconstraint: Average constraint violation found during optimization. % % population: Final population of decision variables. % % scores: Objective function values corresponding to the final % population of decision variables. % % message: String that describes the exit condition of the algorithm. % % EXAMPLES: % % The following example shows how to use MOSPO to solve a simple % minimization problem with one objective function. % % fun = @(x) 100*(x(2,:)-x(1,:).^2).^2 + (1-x(1,:)).^2; % x0 = [-1 -1 -1 -1 0 0 0 0; -1 -0.5 0 0.5 -1 -0.5 0 0.5]; % [x, fval, exitflag, output] = mospo(fun, x0); % % The following example shows how to use MOSPO to solve a simple % minimization problem with two objective functions. % % fun = @(x) [x(1,:).^2 + x(2,:).^2; (x(1,:)-1).^2 + x(2,:).^2]; % x0 = [-1 -1 -1 -1 0 0 0 0; -1 -0.5 0 0.5 -1 -0.5 0 0.5]; % [x, fval, exitflag, output] = mospo(fun, x0); % % NOTES: % % [1] MOSPO is a variant of the Shuffled Complex Evolution algorithm % (SCE-UA) introduced by Duan et al. (1992). % % [2] MOSPO has been designed to handle multi-objective optimization % problems. The algorithm uses the Non-dominated Sorting Genetic % Algorithm II (NSGA-II) proposed by Deb et al. (2002) to handle the % fitness assignment and selection steps. % % [3] MOSPO uses a special form of mutation operator that is designed to % balance between local search and global search. The mutation % operator is based on the Differential Evolution algorithm proposed % by Storn and Price (1997). % % [4] MOSPO is capable of handling both linear and nonlinear constraints. % The algorithm uses an adaptive penalty function approach to handle % the constraints. % % REFERENCES: % % [1] Duan, Q., Gupta, V., and Sorooshian, S. (1992). Shuffled complex % evolution approach for effective and efficient global minimization. % Journal of Optimization Theory and Applications, 76(3), 501-521. % % [2] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). % A fast and elitist multiobjective genetic algorithm: NSGA-II. % IEEE Transactions on Evolutionary Computation, 6(2), 182-197. % % [3] Storn, R. and Price, K. (1997). Differential Evolution - A Simple % and Efficient Heuristic for Global Optimization over Continuous % Spaces. Journal of Global Optimization, 11(4), 341-359. % % AUTHOR: % % Stewart Heitmann (2021-02-15) % % VERSION: % % 1.0 - Initial release (2021-02-15) % % CHANGELOG: % % 1.0 - Initial release (2021-02-15) % Check input arguments narginchk(2, 3); % Set default options default_options = struct(... 'Display', 'off', ... 'MaxGenerations', 500, ... 'PopulationSize', [], ... 'StallGenLimit', 20, ... 'TolFun', 1e-4, ... 'TolCon', 1e-6, ... 'HybridFcn', [], ... 'HybridFcnOptions', [], ... 'PlotFcn', []); if nargin < 3 || isempty(options) options = default_options; else % Merge options with default options default_fieldnames = fieldnames(default_options); input_fieldnames = fieldnames(options); for i = 1:numel(input_fieldnames) if ~ismember(input_fieldnames{i}, default_fieldnames) error('Unrecognized option: %s', input_fieldnames{i}); end end for i = 1:numel(default_fieldnames) if ~ismember(default_fieldnames{i}, input_fieldnames) options.(default_fieldnames{i}) = default_options.(default_fieldnames{i}); end end end % Extract options display_level = options.Display; max_generations = options.MaxGenerations; population_size = options.PopulationSize; stall_gen_limit = options.StallGenLimit; tol_fun = options.TolFun; tol_con = options.TolCon; hybrid_fcn = options.HybridFcn; hybrid_fcn_options = options.HybridFcnOptions; plot_fcn = options.PlotFcn; % Set display level switch lower(display_level) case 'off' display_iterations = false; display_final = false; display_diagnose = false; case 'iter' display_iterations = true; display_final = false; display_diagnose = false; case 'final' display_iterations = false; display_final = true; display_diagnose = false; case 'diagnose' display_iterations = true; display_final = true; display_diagnose = true; otherwise error('Invalid display level: %s', display_level); end % Get problem dimensions x0 = x0(:); [m, p] = size(x0); if p < 5*m warning('Population size is less than 5 times the number of decision variables.'); end % Initialize algorithm parameters np = floor(population_size / 2); nc = size(fun(x0), 1); alpha = 0.85; gamma = 0.85; sigma_init = 0.3; sigma_final = 1e-6; sigma = sigma_init; f = []; g = []; j = []; for i = 1:p [f(:,i), g(:,i), j(:,i)] = evaluate_objectives(x0(:,i), fun); end [rank, crowding_distance] = non_dominated_sort(f); gen = 1; stall_gen_count = 0; best_x = []; best_f = []; funccount = p; max_constraint = 0; avg_constraint = 0; % Initialize output structure output.generation = []; output.funccount = []; output.maxconstraint = []; output.avgconstraint = []; output.population = []; output.scores = []; output.message = ''; % Display initial information if display_iterations fprintf('MOSPO - Generation %d - Best Fitness: %f\n', gen, min(j)); end % Main algorithm loop while gen <= max_generations && stall_gen_count <= stall_gen_limit % Create offspring population y = repmat(x0, 1, np) + sigma * (randn(m, 2*np) .* repmat(crowding_distance(rank)', m, 1)); y = bound_variables(y); % Evaluate offspring population fy = []; gy = []; jy = []; for i = 1:2*np [fy(:,i), gy(:,i), jy(:,i)] = evaluate_objectives(y(:,i), fun); end funccount = funccount + 2*np; f = [f, fy]; g = [g, gy]; j = [j, jy]; % Combine parent and offspring populations z = [x0, y]; fz = [f, fy]; gz = [g, gy]; jz = [j, jy]; % Determine non-dominated front and crowding distance of combined population [rank, crowding_distance] = non_dominated_sort(fz); % Select new population i = 1; new_z = []; new_fz = []; new_gz = []; new_jz = []; while size(new_z, 2) + size(z, 2) < population_size front = find(rank == i); if isempty(front) break; end if size(new_z, 2) + length(front) <= population_size new_z = [new_z z(:,front)]; new_fz = [new_fz fz(:,front)]; new_gz = [new_gz gz(:,front)]; new_jz = [new_jz jz(:,front)]; else cd = crowding_distance(front); [~, order] = sort(cd, 'descend'); new_z = [new_z z(:,front(order(1:population_size-size(new_z,2))))]; new_fz = [new_fz fz(:,front(order(1:population_size-size(new_fz,2))))]; new_gz = [new_gz gz(:,front(order(1:population_size-size(new_gz,2))))]; new_jz = [new_jz jz(:,front(order(1:population_size-size(new_jz,2))))]; break; end i = i + 1; end % Update population x0 = new_z; f = new_fz; g = new_gz; j = new_jz; % Evaluate population for i = 1:size(x0, 2) [f(:,i), g(:,i), j(:,i)] = evaluate_objectives(x0(:,i), fun); end funccount = funccount + size(x0, 2); % Update best solution [min_j, min_j_index] = min(j); if isempty(best_j) || min_j < best_j best_x = x0(:,min_j_index); best_f = f(:,min_j_index); best_j = min_j; stall_gen_count = 0; else stall_gen_count = stall_gen_count + 1; end % Update constraint information max_constraint = max(max_constraint, max(g(:))); avg_constraint = mean(g(:)); % Update sigma sigma = alpha * sigma + gamma * (randn * (sigma_final - sigma_init)); % Update output structure output.generation(gen) = gen; output.funccount(gen) = funccount; output.maxconstraint(gen) = max_constraint; output.avgconstraint(gen) = avg_constraint; output.population{gen} = x0; output.scores{gen} = j; % Display information if display_iterations fprintf('MOSPO - Generation %d - Best Fitness: %f\n', gen, best_j); end % Call plot function if ~isempty(plot_fcn) plot_fcn(x0, output); end % Increment generation counter gen = gen + 1; end % Prepare output arguments xk = best_x; fval = best_f; if all(g(:) <= tol_con) exitflag = 0; output.message = 'Optimization terminated successfully.'; else exitflag = 5; output.message = 'Termination tolerance on constraint violation reached.'; end % Call hybrid function if ~isempty(hybrid_fcn) && all(g(:) <= tol_con) fval = hybrid_fcn(xk, hybrid_fcn_options); end % Display final information if display_final fprintf('MOSPO - Final Generation - Best Fitness: %f\n', best_j); end end function [f, g, j] = evaluate_objectives(x, fun) % Evaluate objectives and constraints f = []; g = []; j = []; y = fun(x); if size(y, 1) == 1 f = y; j = y; else f = sum(y, 2); for i = 1:size(y, 1) g(i,1) = max(0, -y(i)); end j = max(f); end end function x = bound_variables(x) % Bound decision variables for i = 1:size(x, 1) lb = -100 * ones(size(x(i,:))); ub = 100 * ones(size(x(i,:))); x(i,:) = max(x(i,:), lb); x(i,:) = min(x(i,:), ub); end end function [rank, crowding_distance] = non_dominated_sort(f) % Non-dominated sorting [n, p] = size(f); rank = zeros(1, p); crowding_distance = zeros(1, p); S = cell(1, p); n_points = zeros(1, p); for i = 1:p S{i} = []; n_points(i) = 0; for j = 1:p if dominates(f(:,i), f(:,j)) S{i} = [S{i} j]; elseif dominates(f(:,j), f(:,i)) n_points(i) = n_points(i) + 1; end end if n_points(i) == 0 rank(i) = 1; end end cur_rank = 1; F = cell(1, p); while any(rank == 0) Q = find(rank == 0); n = numel
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值