Notes: | |
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? | |
For example, | |
Given n = 3, there are a total of 5 unique BST's. | |
1 3 3 2 1 | |
\ / / / \ \ | |
3 2 1 1 3 2 | |
/ / \ \ | |
2 1 2 3 | |
Solution: dp. | |
*/ |
n=0,f(0)=0;
n=1,f(1)=1;
n=2,f(2)=f(0)*f(1)+f(1)*f(0)=2;
n=3,f(3)=f(0)*f(2)+f(1)*f(1)+f(2)*f(0)=5;
所以
class Solution {
public:
int numTrees(int n) {
return numTrees_2(n);
}
int numTrees_1(int n) {
int dp[n+1];
memset(dp, 0, sizeof(dp));
dp[0] = 1;
for (int i = 1; i <= n; ++i)
for (int j = 0; j < i; j++)
dp[i] += dp[j] * dp[i-j-1];
return dp[n];
}
int numTrees_2(int n) {
if (n < 0) return 0;
vector<int> dp(n+1, 0);
dp[0] = 1; dp[1] = 1;
for(int i = 2;i <= n; ++i){
dp[i] = dp[i-1] * (4 * i - 2)/(i + 1);
}
return dp[n];
}
};