5.3.3 Validate Binary Searh Tree

Notes:
  Given a binary tree, determine if it is a valid binary search tree (BST).
  Assume a BST is defined as follows:
  The left subtree of a node contains only nodes with keys less than the node's key.
  The right subtree of a node contains only nodes with keys greater than the node's key.
  Both the left and right subtrees must also be binary search trees.
 
  Solution: Recursion. 1. Add lower & upper bound. O(n)
  2. Inorder traversal with one additional parameter (value of predecessor). O(n)
  */
   
  /**
  * Definition for binary tree
  * struct TreeNode {
  * int val;
  * TreeNode *left;
  * TreeNode *right;
  * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
  * };
  */
class Solution {
public:
    bool isValidBST(TreeNode *root) {
        return isValidBST_1(root);
    }

    // solution 1: lower bound + higher bound
    bool isValidBST_1(TreeNode *root) {
        return isValidBSTRe_1(root, INT_MIN, INT_MAX);
    }

    bool isValidBSTRe_1(TreeNode *node, int lower, int upper){
        if (!node) return true;
        if (node->val <= lower || node->val >= upper) return false;

        return isValidBSTRe_1(node->left, lower, node->val) && 
               isValidBSTRe_1(node->right, node->val, upper);
    }

    // solution 2: inorder
    bool isValidBST_2(TreeNode *root) {
        TreeNode * prev = NULL;
        return inorder(root, prev);
    }
    bool inorder(TreeNode * root, TreeNode*&prev) {
        if (root == NULL) return true;
        if (inorder(root->left, prev) == false) 
            return false;
        if (prev && root->val <= prev->val) return false;
        prev = root;
        return inorder(root->right,prev);
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值