Notes: | |
Given a binary tree, determine if it is a valid binary search tree (BST). | |
Assume a BST is defined as follows: | |
The left subtree of a node contains only nodes with keys less than the node's key. | |
The right subtree of a node contains only nodes with keys greater than the node's key. | |
Both the left and right subtrees must also be binary search trees. | |
Solution: Recursion. 1. Add lower & upper bound. O(n) | |
2. Inorder traversal with one additional parameter (value of predecessor). O(n) | |
*/ | |
/** | |
* Definition for binary tree | |
* struct TreeNode { | |
* int val; | |
* TreeNode *left; | |
* TreeNode *right; | |
* TreeNode(int x) : val(x), left(NULL), right(NULL) {} | |
* }; | |
*/ |
class Solution {
public:
bool isValidBST(TreeNode *root) {
return isValidBST_1(root);
}
// solution 1: lower bound + higher bound
bool isValidBST_1(TreeNode *root) {
return isValidBSTRe_1(root, INT_MIN, INT_MAX);
}
bool isValidBSTRe_1(TreeNode *node, int lower, int upper){
if (!node) return true;
if (node->val <= lower || node->val >= upper) return false;
return isValidBSTRe_1(node->left, lower, node->val) &&
isValidBSTRe_1(node->right, node->val, upper);
}
// solution 2: inorder
bool isValidBST_2(TreeNode *root) {
TreeNode * prev = NULL;
return inorder(root, prev);
}
bool inorder(TreeNode * root, TreeNode*&prev) {
if (root == NULL) return true;
if (inorder(root->left, prev) == false)
return false;
if (prev && root->val <= prev->val) return false;
prev = root;
return inorder(root->right,prev);
}
};