有向无环图:若一个有向图中不存在环,则称为有向无环图,简称DAG。
AOV网:若用DAG图表示一个工程,其顶点表示活动,用有向边表示活动必须先于活动进行的关系,将这样的有向无环图称为顶点代表活动的网络,记为AOV网。在AOV网中,活动是活动的直接前驱,活动是活动的直接后继,这种前驱和后继关系具有传递性,且任何活动不能以它自己作为自己的前驱和后继。
拓扑排序:在图论中,有一个有向无环图的顶点组成的序列,当且仅当满足:
- 每个顶点出现且只出现一次。
- 若顶点在序列中排在顶点的前面,则在图中不存在从顶点到顶点的路径。
对一个AOV网进行拓扑排序的常用方法:
- 在AOE网中找一个没有前驱的顶点,并加入序列;
- 删除以该顶点作为起点的所有有向边;
- 重复以上两个步骤,直到AOV网为空或网中不再存在无前驱的顶点(后面的情况说明这个有向图中存在环)
对应代码
//Step 1.The in-degree of each node.
int[] tempInDegrees=new int[numNodes];
for(int i=0;i<numNodes;i++) {
for(int j=0;j<numNodes;j++) {
if(weightMatrix.getValue(i, j)!=-1) {
tempInDegrees[j]++;
}//Of if
}//Of for j
}//Of for i
//Step 2. Topology sorting.
for(int i=0;i<numNodes;i++) {
if(tempInDegrees[i]==0) {
System.out.println("Removing "+i);
for(int j=0;j<numNodes;j++) {
if(weightMatrix.getValue(i, j)!=-1) {
tempInDegrees[j]--;
}
}
}
}
逆拓扑排序:顾名思义,是拓扑排序的逆序列,可以通过拓扑排序获得,也可以与求拓扑排序相同,只是每次输出的是出度为0的点。
AOE网:在带权有向图中,以顶点表示时间,以有向边表示活动,以边上的权值表示完成该活动的开销,称为用边表示的网络,是一个有向无环图。在AOE网中仅有一个入度为0的顶点,称为源点,它表示整个工程的开始;网络中也仅存在一个出度为0的顶点,称为汇点,它表示整个工程的结束。
关键路径:在AOE网中从源点到汇点的路径可能有多条,并且路径长度不同。完成路径上的活动所花的开销虽然不同,但是只有所有路径上的活动都已完成,整个工程才能算结束。因此,从源点到汇点的所有路径中,具有最大路径长度的路径被称为关键路径,而把关键路径上的活动称为关键活动。关键路径表示完成整个工程的最短时间。
求每个活动的最早开始时间:
v
e
[
]
ve[]
ve[](初始值设为0)
1、通过遍历找出所有顶点的入度,并用inDegree[]记录;
2、在所有顶点中找到入度为0的顶点
v
i
v_i
vi,然后遍历该结点所指向的所有顶点
v
j
v_j
vj,并更新指向顶点的
v
e
[
j
]
=
m
a
x
(
v
e
[
j
]
,
v
e
[
i
]
+
w
e
i
g
h
t
(
i
,
j
)
)
ve[j]=max(ve[j],ve[i]+weight(i,j))
ve[j]=max(ve[j],ve[i]+weight(i,j)),最后inDegree[j]–;
3、重复步骤2直到遍历所有入度为0的顶点;
代码:
int tempValue;
// Step 1.The in-degree of each node.
int[] tempInDegrees = new int[numNodes];
for (int i = 0; i < numNodes; i++) {
for (int j = 0; j < numNodes; j++) {
if (weightMatrix.getValue(i, j) != -1) {
tempInDegrees[j]++;
} // Of if
} // Of for j
} // Of for i
System.out.println("In-degree of nodes: " + Arrays.toString(tempInDegrees));
// Step 2. Topology sorting.
int[] tempEarliestTimeArray = new int[numNodes];
for (int i = 0; i < numNodes; i++) {
if (tempInDegrees[i] > 0) {
continue;
} // Of if
System.out.println("Removing " + i);
for (int j = 0; j < numNodes; j++) {
if (weightMatrix.getValue(i, j) != -1) {
tempInDegrees[j]--;
tempValue = tempEarliestTimeArray[i] + weightMatrix.getValue(i, j);
if (tempEarliestTimeArray[j] < tempValue) {
tempEarliestTimeArray[j] = tempValue;
} // Of if
} // Of if
} // Of for j
} // Of for i
System.out.println("Earlest start time: " + Arrays.toString(tempEarliestTimeArray));
求每个活动最迟开始时间:vl[](初始值设为汇点的最早开始时间)
1、通过遍历找出所有顶点的出度,并用outDegree[]记录;
2、在所有顶点中找到出度为0的顶点i,然后遍历该结点所指向的所有顶点j,并更新指向顶点的
v
l
[
j
]
=
m
i
n
(
v
l
[
j
]
,
v
l
[
i
]
−
w
e
i
g
h
t
(
j
,
i
)
)
vl[j]=min(vl[j],vl[i]-weight(j,i))
vl[j]=min(vl[j],vl[i]−weight(j,i)),最后outDegree[j]–;
3、重复步骤2直到遍历所有出度为0的顶点;
代码和求最早开始时间大同小异。
完整代码:
/**
*
*********************
* @Title: criticalPath
* @Description: TODO( Critical path. Net validity checks such as loop check not
* implemented.The source should be 0 and the destination should
* be n-1.)
*
* @return The node sequence of the path.
*********************
*
*/
public boolean[] criticalPath() {
int tempValue;
// Step 1.The in-degree of each node.
int[] tempInDegrees = new int[numNodes];
for (int i = 0; i < numNodes; i++) {
for (int j = 0; j < numNodes; j++) {
if (weightMatrix.getValue(i, j) != -1) {
tempInDegrees[j]++;
} // Of if
} // Of for j
} // Of for i
System.out.println("In-degree of nodes: " + Arrays.toString(tempInDegrees));
// Step 2. Topology sorting.
int[] tempEarliestTimeArray = new int[numNodes];
for (int i = 0; i < numNodes; i++) {
if (tempInDegrees[i] > 0) {
continue;
} // Of if
System.out.println("Removing " + i);
for (int j = 0; j < numNodes; j++) {
if (weightMatrix.getValue(i, j) != -1) {
tempInDegrees[j]--;
tempValue = tempEarliestTimeArray[i] + weightMatrix.getValue(i, j);
if (tempEarliestTimeArray[j] < tempValue) {
tempEarliestTimeArray[j] = tempValue;
} // Of if
} // Of if
} // Of for j
} // Of for i
System.out.println("Earlest start time: " + Arrays.toString(tempEarliestTimeArray));
// Step 3. The out-degree of each node.
int[] tempOutDegrees = new int[numNodes];
for (int i = 0; i < numNodes; i++) {
for (int j = 0; j < numNodes; j++) {
if (weightMatrix.getValue(i, j) != -1) {
tempOutDegrees[i]++;
} // Of if
} // Of for j
} // Of for i
System.out.println("Out-degree of nodes: " + Arrays.toString(tempOutDegrees));
// Step 4. Reverse topology sorting.
int[] tempLatestTimeArray = new int[numNodes];
for (int i = 0; i < numNodes; i++) {
tempLatestTimeArray[i] = tempEarliestTimeArray[numNodes - 1];
} // Of for i
for (int i = numNodes - 1; i >= 0; i--) {
if (tempOutDegrees[i] > 0) {
continue;
} // Of if
System.out.println("Removing " + i);
for (int j = 0; j < numNodes; j++) {
if (weightMatrix.getValue(j, i) != -1) {
tempOutDegrees[j]--;
tempValue = tempLatestTimeArray[i] - weightMatrix.getValue(j, i);
if (tempLatestTimeArray[j] > tempValue) {
tempLatestTimeArray[j] = tempValue;
} // Of if
} // Of if
} // Of for j
} // Of for i
System.out.println("Latest start time: " + Arrays.toString(tempLatestTimeArray));
boolean[] resultCriticalArray = new boolean[numNodes];
for (int i = 0; i < numNodes; i++) {
if (tempEarliestTimeArray[i] == tempLatestTimeArray[i]) {
resultCriticalArray[i] = true;
} // Of if
} // Of for i
System.out.println("Critical array: " + Arrays.toString(resultCriticalArray));
System.out.print("Critical nodes: ");
for (int i = 0; i < numNodes; i++) {
if (resultCriticalArray[i]) {
System.out.print(" " + i);
} // Of if
} // Of for i
System.out.println();
return resultCriticalArray;
}// Of criticalPath
/**
*********************
* The entrance of the program.
*
* @param args Not used now.
*********************
*/
public static void main(String args[]) {
Net tempNet0 = new Net(3);
System.out.println(tempNet0);
int[][] tempMatrix1 = { { 0, 9, 3, 6 }, { 5, 0, 2, 4 }, { 3, 2, 0, 1 }, { 2, 8, 7, 0 } };
Net tempNet1 = new Net(tempMatrix1);
System.out.println(tempNet1);
// Dijkstra
tempNet1.dijkstra(1);
// An undirected net is required.
int[][] tempMatrix2 = { { 0, 7, MAX_DISTANCE, 5, MAX_DISTANCE }, { 7, 0, 8, 9, 7 },
{ MAX_DISTANCE, 8, 0, MAX_DISTANCE, 5 }, { 5, 9, MAX_DISTANCE, 0, 15 }, { MAX_DISTANCE, 7, 5, 15, 0 } };
Net tempNet2 = new Net(tempMatrix2);
tempNet2.prim();
// A directed net without loop is required.
// Node cannot reach itself.It is indicated by -1.
int[][] tempMatrix3 = { { -1, 3, 2, -1, -1, -1 }, { -1, -1, -1, 2, 3, -1 }, { -1, -1, -1, 4, -1, 3 },
{ -1, -1, -1, -1, -1, 2 }, { -1, -1, -1, -1, -1, 1 }, { -1, -1, -1, -1, -1, -1 } };
Net tempNet3 = new Net(tempMatrix3);
System.out.println("--------critical path");
tempNet3.criticalPath();
}// Of main
测试用例:
运行结果: