思路:先假设有两个数是x和y,存在一个最大公约数z=(x,y),即x和y都有公约数z,那么x一定能被z整除,y也能被z整除,所以x和y的线性组合mx+(-)ny也一定能被z整除。(m,n可取任意整数)
对于辗转相除法来说,思路就是:若x>y,设x/y=n余c,则x能表示成x=ny+c的形式,将ny移到左边就是x-ny=c,由于一般形式的mx+(-)ny能被z整除,所以等号左边的x-ny(作为mx+(-)ny的一个特例)就能被z整除,即x除y的余数也能被z整除。具体程序如下:
#include<stdio.h>
#include<windows.h>
#include<math.h>
int max_common_divisor(int a, int b)
{
while (a*b != 0)
{
if (a > b)
{
a %= b;
}
else
{
b %= a;
}
}
return a == 0 ? b : a;
}
int main()
{
int a = 102;
int b = 36;
printf("%d,%d max common divisor is:%d\n", a, b, max_common_divisor(a, b));
system("pause");
return