【CV】ORB算法

1. ORB算法:

  • 特点

    • 实现了旋转不变性、尺度不变性和计算效率高等特性。
  • 旋转不变性

    • 通过计算关键点周围的梯度信息,确定关键点的主方向。
    • 将图像旋转到关键点的主方向,然后再提取BRIEF描述符,增强了旋转不变性。
      ORB(Oriented FAST and Rotated BRIEF)是一种结合了FAST关键点检测器和BRIEF描述符的特征提取算法,它在计算效率和检测性能之间取得了很好的平衡。

在FAST检测到关键点之后,ORB算法会根据关键点周围的局部图像区域计算BRIEF描述符。
为了增强ORB算法的旋转不变性,它还引入了一种旋转校正的机制。会根据关键点周围的梯度信息计算出关键点的主方向,并将图像旋转到关键点的主方向,然后再提取BRIEF描述符。

优点

ORB算法具有较高的计算效率,适用于实时应用和资源受限的环境。
ORB算法在一定程度上具备旋转不变性和尺度不变性,对图像的光照变化也具有一定的鲁棒性。
ORB算法是一种开源算法,易于实现和使用,广泛应用于计算机视觉领域的特征提取和匹配任务中。

1.1. FAST关键点检测器:

FAST算法通过比较像素周围邻域的强度值来判断当前像素是否为角点。如果一个像素周围存在连续的像素强度值超过或低于该像素强度值的阈值,那么该像素就被认为是一个角点。
FAST算法对图像的亮度变化和旋转变化具有一定的不变性,但对于尺度变化不具备不变性。

  • 原理

    • FAST算法通过比较像素周围邻域的强度值来判断当前像素是否为角点。
    • 选择一个像素ppp,将其亮度值与周围的16个像素点进行比较。
    • 如果存在连续的nnn个像素点,其亮度值均大于或小于阈值TTT,则像素ppp被认为是一个角点。

    设像素ppp的亮度值为IpI_pIp,周围16个像素点的亮度值为Ip1,Ip2,...,Ip16I_{p1}, I_{p2}, ..., I_{p16}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Z_shsf

来包瓜子嘛,谢谢客官~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值