The task is really simple: given N exits on a highway which forms a simple cycle, you are supposed to tell the shortest distance between any pair of exits.
Input Specification:
Each input file contains one test case. For each case, the first line contains an integer N (in [3,105]), followed by N integer distances D1 D2 ⋯ DN, where Di is the distance between the i-th and the (i+1)-st exits, and DN is between the N-th and the 1st exits. All the numbers in a line are separated by a space. The second line gives a positive integer M (≤104), with M lines follow, each contains a pair of exit numbers, provided that the exits are numbered from 1 to N. It is guaranteed that the total round trip distance is no more than 107.
Output Specification:
For each test case, print your results in M lines, each contains the shortest distance between the corresponding given pair of exits.
Sample Input:
5 1 2 4 14 9
3
1 3
2 5
4 1
Sample Output:
3
10
7
题意:N个点组成一个环, 问任意两点之间最近的距离是多少.Di 表示 从i位置到i+1的距离
思路:1.任意两点之间有两种走法,分别是顺时针和逆时针走.
2.在计算距离之前,我们不妨先处理从点1到任意点n之间的距离(n>1),可以得出1-n的距离(数组的前缀和)
dis[n]=dis[n-1]+D[n-1]
但既然是一个环,那么从点N到点1的距离也要求出,修改dis[1]的值 :dis[1]=dis[N]+D[N]
3.当询问点x,y时,存在两种情况
A.x<=y
B.x>y
分别求出顺时针方向和逆时针方向的距离取较小值即可
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int Max=1e5+5;
int main()
{
int N,Arr[Max],Pri[Max];
scanf("%d",&N);
Arr[0]=Pri[0]=0;
for(int i=1;i<=N;i++)
{
scanf("%d",&Arr[i]);
Pri[i]=Arr[i-1]+Pri[i-1];
}
Pri[1]=Arr[N]+Pri[N];
int M,u,v;
scanf("%d",&M);
while(M--)
{
scanf("%d %d",&u,&v);
if(u<=v)
{
if(u==1)
printf("%d\n",min(Pri[v],Pri[1]-Pri[v]));
else
printf("%d\n",min(Pri[v]-Pri[u],Pri[1]-Pri[v]+Pri[u]));
}
else
{
if(v==1)
printf("%d\n",min(Pri[u],Pri[1]-Pri[u]));
else
printf("%d\n",min(Pri[u]-Pri[v],Pri[1]-Pri[u]+Pri[v]));
}
}
return 0;
}