目录
11. 在多个字段都要创建索引的情况下,联合索引优于单值索引
一.哪些情况适合创建索引
1.字段的数值有唯一性的限制
索引本身可以起到约束的作用,比如唯一索引、主键索引都是可以起到唯一性约束的,因此在我们的数据表中,如果某个字段是唯一性的,就可以直接创建唯一性索引,或者主键索引。这样可以更快速地通过该索引来确定某条记录。
例如,学生表中学号是具有唯一性的字段,为该字段建立唯一性索引可以很快确定某个学生的信息,如果使用姓名的话,可能存在同名现象,从而降低查询速度。
业务上具有唯一特性的字段,即使是组合字段,也必须建成唯一索引
2.频繁作为 WHERE 查询条件的字段
某个字段在SELECT语句的 WHERE 条件中经常被使用到,那么就需要给这个字段创建索引了。尤其是在数据量大的情况下,创建普通索引就可以大幅提升数据查询的效率。
比如student_info数据表(含100万条数据),假设我们想要查询 student_id=123110 的用户信息
#② 频繁作为 WHERE 查询条件的字段
#查看当前stduent_info表中的索引
SHOW INDEX FROM student_info;
#student_id字段上没有索引的:
SELECT course_id, class_id, NAME, create_time, student_id
FROM student_info
WHERE student_id = 123110; #276ms
#给student_id字段添加索引
ALTER TABLE student_info
ADD INDEX idx_sid(student_id);
#student_id字段上有索引的:
SELECT course_id, class_id, NAME, create_time, student_id
FROM student_info
WHERE student_id = 123110; #43ms
#将作为where查询条件的字段student_id设为索引后查询效率提高了
3.经常 GROUP BY 和 ORDER BY 的列
索引就是让数据按照某种顺序进行存储或检索,因此当我们使用 GROUP BY 对数据进行分组查询,或者使用 ORDER BY 对数据进行排序的时候,就需要 对分组或者排序的字段进行索引 。如果待排序的列有多个,那么可以在这些列上建立 组合索引
比如,按照student_id对学生选修的课程进行分组,显示不同的student_id和课程数目,显示100个:
#③ 经常 GROUP BY 和 ORDER BY 的列
#student_id字段上有索引的:
SELECT student_id, COUNT(*) AS num
FROM student_info
GROUP BY student_id LIMIT 100; #41ms
#删除idx_sid索引
DROP INDEX idx_sid ON student_info;
#student_id字段上没有索引的:
SELECT student_id, COUNT(*) AS num
FROM student_info
GROUP BY student_id LIMIT 100; #866ms
结论:
1.如果单独用GROUP BY,就针对对应字段建立索引,若对多个字段进行GROUP BY,可以建立联合索引。
2.如果既有GROUP BY又有ORDER BY可以考虑联合索引,此联合索引中要把GROUP BY 的字段写在前面,ORDER BY的字段写在后面(因为在进行SELECT查询的时候,先进行GROUP BY,再对数据进行ORDER BY的操作)
4.UPDATE、DELETE 的 WHERE 条件列
对数据按照某个条件进行查询后再进行 UPDATE 或 DELETE 的操作,如果对 WHERE 字段创建了索引,就能大幅提升效率。原理是因为我们需要先根据 WHERE 条件列检索出来这条记录,然后再对它进行更新或删除。
如果进行更新的时候,更新的字段是非索引字段,提升的效率会更明显,这是因为非索引字段更新不需要对索引进行维护。
#④ UPDATE、DELETE 的 WHERE 条件列
#查看,没有关于name的索引
SHOW INDEX FROM student_info;
UPDATE student_info SET student_id = 10002
WHERE NAME = '462eed7ac6e791292a79'; #0.633s
#添加索引
ALTER TABLE student_info
ADD INDEX idx_name(NAME);
UPDATE student_info SET student_id = 10001
WHERE NAME = '462eed7ac6e791292a79'; #0.001s
5.DISTINCT 字段需要创建索引
有时候我们需要对某个字段进行去重,使用 DISTINCT,那么对这个字段创建索引,也会提升查询效率。
6. 多表 JOIN 连接操作时,创建索引注意事项
(1)连接表的数量尽量不要超过 3 张,因为每增加一张表就相当于增加了一次嵌套的循环,数量级增长会非常快,严重影响查询的效率。
(2)对 WHERE 条件创建索引 ,因为 WHERE 才是对数据条件的过滤。如果在数据量非常大的情况下,没有 WHERE 条件过滤是非常可怕的。
(3)对用于连接的字段创建索引 ,并且该字段在多张表中的 类型必须一致 。
7. 使用列的类型小的创建索引
这里所说的类型大小指的就是该类型表示的数据范围的大小。
在定义表结构的时候要显式的指定列的类型,以整数类型为例,有TINYINT、MEDIUNINT、INT、BIGINT等,它们占用的存储空间依次递增,能表示的整数范围当然也是依次递增。如果想要对某个整数列建立索引的话。在表示的整数范围允许的情况下,尽量让索引列使用较小的类型,比如能使用INT就不要使BIGINT,能使用MEDIUMINT就不要使用INT。这是因为:
(1)数据类型越小,在查询时进行的比较操作越快
(2)数据类型越小,索引占用的存储空间就越少,在一个数据页内就可以放下更多的记录,从而减少磁盘I/O带来的性能损耗,也就意味着可以把更多的数据页缓存在内存中,从而加快读写效率这个建议对于表的主键来说更加适用,因为不仅是聚簇索引中会存储主键值,其他所有的二级索引的节点处都会存储一份记录的主键值,如果主键使用更小的数据类型,也就意味着节省更多的存储空间和更高效的I/O。
8. 使用字符串前缀创建索引
假设字符串很长,那存储一个字符串就需要占用很大的存储空间。在需要为这个字符串列建立索引时,那就意味若在对应的B+树中有这么两个问题:
(1)B+树索引中的记录需要把该列的完整字符串存储起来,更费时。而且字符串越长,在索引中占用的存储空间越大。
(2)如果B+树索引中索引列存储的字符串很长,那在做字符串比较时会占用更多的时间。
我们可以通过截取字段的前面一部分内容建立索引,这个就叫前缀索引。这样在查找记录时虽然不能精确的定位到记录的位置,但是能定位到相应前缀所在的位置,然后根据前缀相同的记录的主键值回表查询完整的字符串值。既节约空间,又减少了字符串的比较时间,还大体能解决排序的问题。
例如,TEXT和BLOG类型的字段,进行全文检索会很浪费时间,如果只检索字段前面的若干字符,这样可以提高检索速度。
Alibaba《Java开发手册》
在 varchar 字段上建立索引时,必须指定索引长度,没必要对全字段建立索引,根据实际文本区分度决定索引长度。
说明:索引的长度与区分度是一对矛盾体,一般对字符串类型数据,长度为 20 的索引,区分度会 高达90% 以上 ,可以使用 count(distinct left(列名, 索引长度))/count(*)的区分度来确定。
9. 区分度高(散列性高)的列适合作为索引
列的基数:指的是某一列中不重复数据的个数,比方说某个列包含值2,5,8,2,5,8,2,5,8
,虽然有9
条记录,但该列的基数却是3
。也就是说,在记录行数一定的情况下,列的基数越大,该列中的值越分散;列的基数越小,该列中的值越集中。这个列的基数指标非常重要,直接影响我们是否能有效的利用索引。最好为列的基数大的列建立索引,为基数太小列的建立索引效果可能不好。
可以使用公式 select count(distinct a)/count(*) from t1计算区分度,越接近1越好,一般超过33%就算是比较高效的索引了。
10.使用最频繁的列放到联合索引的左侧
11. 在多个字段都要创建索引的情况下,联合索引优于单值索引
二.限制索引的数目
在实际工作中也需要注意平衡,索引的数目不是越多越好。要限制每张表上的索引数目,建议单张表索引数量不超过6个,原因:
1.每个索引都需要占用磁盘空间,索引越多,需要的磁盘空间就大。
2.索引会影响INSERT、DELETE、UPDATE等语句的性能,因为表中的数据更改的同时,索引也会进行调整和更新,会造成负担。
3.优化器在选择如何优化查询时,会根据统一信息,对每一个可以用到的索引进行评估,以生成出一个最好的执行计划,如果同时有很多个索引都可以用于查询,会增加MySQL优化器生成执行计划时间,降低查询性能。
三.哪些情况不适合创建索引
1. 在where中使用不到的字段,不要设置索引
WHERE条件(包括GROUP BY、ORDER BY)里用不到的字段不需要创建索引,索引的价值是快速定位,如果起不到定位的字段通常是不需要创建索引的。
2. 数据量小的表最好不要使用索引
如果表记录太少,比如少于1000个,那么是不需要创建索引的。表记录太少,是否创建索引对查询效率的影响不大。甚至说,查询花费的时间可能比遍历索引的时间还要短,索引可能不会产生优化效果。
3.避免对经常更新的表创建过多的索引
第一层含义︰频繁更新的字段不一定要创建索引。因为更新数据的时候,也需要更新索引,如果索引太多,在更新索引的时候也会造成负担,从而影响效率。
第二层含义:避免对经常更新的表创建过多的索引,并且索引中的列尽可能少。此时,虽然提高了查询速度,同时却会降低更新表的速度。
4.不建议用无序的值作为索引
例如身份证、UUID(在索引比较时需要转为ASCII,并且插入时可能造成页分裂)、MD5、HASH、无序长字符串等。
5.删除不再使用或者很少使用的索引
表中的数据被大量更新,或者数据的使用方式被改变后,原有的一些索引可能不再需要。应当定期找出这些索引,将它们删除,从而减少索引对更新操作的影响。